yingweiwo

WB 4101 hydrochloride

Alias: 2170-58-3; WB 4101 hydrochloride; WB4101 hydrochloride; WB-4101 hydrochloride; N-((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)methyl)-2-(2,6-dimethoxyphenoxy)ethanamine hydrochloride; 2-(2,6-Dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride; 2((2,6-DIMETHOXYPHENOXY-ETHYL)*AMINOMETHYL)-1,4-BENZ; CHEBI:64094;
Cat No.:V28175 Purity: ≥98%
(±)-WB 4101 is a potent noradrenaline antagonist.
WB 4101 hydrochloride
WB 4101 hydrochloride Chemical Structure CAS No.: 2170-58-3
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
(±)-WB 4101 is a potent noradrenaline antagonist. (±)-WB 4101 interacts with smooth muscle proteins. (±)-WB 4101 binds drugs tightly to receptors.
Biological Activity I Assay Protocols (From Reference)
Targets
alpha-adrenoceptor
ln Vitro
Sodium channels are important proteins in modulating neuronal membrane excitability. Genetic studies from patients and animals have indicated neuronal sodium channels play key roles in pain sensitization. Researchers identified WB4101 (2-(2,6-Dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride), an antagonist of α1-adrenoceptor, as a Nav1.7 inhibitor from a screen. The present study characterized the effects of WB4101 on sodium channels. It was demonstrated that WB4101 inhibited both Nav1.7 and Nav1.8 channels with similar levels of potency. The half-inhibition concentrations (IC50 values) of WB4101 were 11.6 ± 2.07 and 1.0 ± 0.07 µM for the resting and inactivated Nav1.7 channels, respectively, and 8.67 ± 1.31 and 0.91 ± 0.25 µM for the resting and inactivated Nav1.8 channels, respectively. WB4101 induced a hyperpolarizing shift in the voltage-dependent inactivation for both Nav1.7 (15 mV) and Nav1.8 (20 mV) channels. The IC50 values for the open-state sodium channel were 2.50 ± 1.16 µM for Nav1.7 and 1.1 ± 0.2 µM for Nav1.8, as determined by the block of persistent late currents in inactivation-deficient Nav1.7 and Nav1.8 channels, respectively. Consistent with the state-dependent block, the drug also displayed use-dependent inhibitory properties on both wild-type Nav1.7 and Nav1.8 channels, which were removed by the local anesthetic-insensitive mutations but still existed in the inactivation-deficient channels. Further, the state-dependent inhibition on sodium channels induced by WB4101 was demonstrated in dorsal root ganglion neurons. In conclusion, the present study identified WB4101 as a sodium channel blocker with an open-state-dependent property, which may contribute to WB4101's analgesic action[1].
ln Vivo
The aim of the study was to investigate the roles of α1-adrenoceptor subtypes in the last-day pregnant rat uterus in vitro by the administration of subtype-specific antagonists (the α1A-adrenoceptor antagonist WB 4101 and the α1D-adrenoceptor antagonist BMY 7378) after 17β-estradiol or progesterone pretreatment. In isolated organ bath studies, contractions were elicited with (-)-noradrenaline (10(-8)-10(-5)M) in the presence of propranolol (10(-5)M) and yohimbine (10(-6)M) in order to avoid β-, and α2-adrenergic action. The myometrial expressions of the α1-adrenoceptor subtypes were determined by means of the real time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting techniques. The activated G protein levels were investigated through radiolabelled GTP binding assays. Both 17β-estradiol and progesterone pretreatment changed the myometrial contracting effect of (-)-noradrenaline. In the presence of WB 4101, progesterone pretreatment decreased the (-)-noradrenaline-induced myometrial contraction. In the presence of BMY 7378, both the 17β-estradiol and the progesterone pretreatment reduced the effect of (-)-noradrenaline. The mRNA and protein expressions of the α1A-adrenoceptors were decreased after 17β-estradiol pretreatment. (-)-Noradrenaline increased the [(35)S]GTPγS binding of the α1-adrenoceptors, which was most markedly elevated by progesterone. Pertussis toxin inhibited the [(35)S]GTPγS binding-stimulating effect of (-)-noradrenaline, indicating the role of Gi proteins in the signal mechanisms. 17β-estradiol pretreatment blocks the expression of the α1A-adrenoceptors, whereas it does not influence the expression of the α1D-adrenoceptors. Progesterone pretreatment does not have any effect on the myometrial mRNA and protein expressions of the α1-adrenoceptors, but it alters the G protein coupling of these receptors, promoting a Gi-dependent pathway[2].
References
[1]. Identification of WB4101, an α1-Adrenoceptor Antagonist, as a Sodium Channel Blocker. Mol Pharmacol. 2018 Aug;94(2):896-906.
[2]. The effects of female sexual hormones on the expression and function of α1A- and α1D-adrenoceptor subtypes in the late-pregnant rat myometrium. Eur J Pharmacol. 2015 Dec 15:769:177-84.
Additional Infomation
N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanamine hydrochloride is a hydrochloride salt that is obtained by reaction of N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanamine with one equivalent of hydrogen chloride. An alpha1A-adrenergic selective antagonist. It has a role as an alpha-adrenergic antagonist. It contains a N-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanaminium(1+).
Antidepressants, such as duloxetine and amitriptyline, are effective for treating patients with chronic neuropathic pain. Inhibiting norepinephrine and serotonin transporters at presynaptic terminals raises extracellular concentrations of norepinephrine. The α1- and α2-adrenergic receptor agonists inhibit glutamatergic input from primary afferent nerves to the spinal dorsal horn. However, the contribution of spinal α1- and α2-adrenergic receptors to the analgesic effect of antidepressants and associated synaptic plasticity remains uncertain. In this study, we showed that systemic administration of duloxetine or amitriptyline acutely reduced tactile allodynia and mechanical and thermal hyperalgesia caused by spinal nerve ligation in rats. In contrast, duloxetine or amitriptyline had no effect on nociception in sham rats. Blocking α1-adrenergic receptors with WB-4101 or α2-adrenergic receptors with yohimbine at the spinal level diminished the analgesic effect of systemically administered duloxetine and amitriptyline. Furthermore, intrathecal injection of duloxetine or amitriptyline similarly attenuated pain hypersensitivity in nerve-injured rats; the analgesic effect was abolished by intrathecal pretreatment with both WB-4101 and yohimbine. In addition, whole-cell patch-clamp recordings in spinal cord slices showed that duloxetine or amitriptyline rapidly inhibited dorsal root-evoked excitatory postsynaptic currents in dorsal horn neurons in nerve-injured rats but had no such effect in sham rats. The inhibitory effect of duloxetine and amitriptyline was abolished by the WB-4101 and yohimbine combination. Therefore, antidepressants attenuate neuropathic pain predominantly by inhibiting primary afferent input to the spinal cord via activating both α1- and α2-adrenergic receptors. This information helps the design of new strategies to improve the treatment of neuropathic pain. ACS Chem Neurosci. 2023 Apr 5;14(7):1261-1277.
The management of patients with type 2 diabetes mellitus (T2DM) is shifting from cardio-centric to weight-centric or, even better, adipose-centric treatments. Considering the downsides of multidrug therapies and the relevance of dipeptidyl peptidase IV (DPP IV) and carbonic anhydrases (CAs II and V) in T2DM and in the weight loss, we report a new class of multitarget ligands targeting the mentioned enzymes. We started from the known α1-AR inhibitor WB-4101, which was progressively modified through a tailored morphing strategy to optimize the potency of DPP IV and CAs while losing the adrenergic activity. The obtained compound 12 shows a satisfactory DPP IV inhibition with a good selectivity CA profile (DPP IV IC50: 0.0490 μM; CA II Ki 0.2615 μM; CA VA Ki 0.0941 μM; CA VB Ki 0.0428 μM). Furthermore, its DPP IV inhibitory activity in Caco-2 and its acceptable pre-ADME/Tox profile indicate it as a lead compound in this novel class of multitarget ligands. J Med Chem. 2022 Oct 27;65(20):13946-13966.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H23NO5.HCL
Molecular Weight
381.85056
Exact Mass
381.134
Elemental Analysis
C, 59.76; H, 6.34; Cl, 9.28; N, 3.67; O, 20.95
CAS #
2170-58-3
Related CAS #
2170-58-3 (HCl);613-67-2 (free);
PubChem CID
11957505
Appearance
Typically exists as solid at room temperature
Density
1.16g/cm3
Boiling Point
472.7ºC at 760mmHg
Flash Point
200ºC
Vapour Pressure
4.19E-09mmHg at 25°C
LogP
3.705
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
8
Heavy Atom Count
26
Complexity
371
Defined Atom Stereocenter Count
0
SMILES
Cl.COC1C=CC=C(OC)C=1OCCNCC1COC2=CC=CC=C2O1
InChi Key
KAHMEWANVDFFCQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H23NO5.ClH/c1-21-17-8-5-9-18(22-2)19(17)23-11-10-20-12-14-13-24-15-6-3-4-7-16(15)25-14;/h3-9,14,20H,10-13H2,1-2H3;1H
Chemical Name
N-(2,3-dihydro-1,4-benzodioxin-3-ylmethyl)-2-(2,6-dimethoxyphenoxy)ethanamine;hydrochloride
Synonyms
2170-58-3; WB 4101 hydrochloride; WB4101 hydrochloride; WB-4101 hydrochloride; N-((2,3-dihydrobenzo[b][1,4]dioxin-2-yl)methyl)-2-(2,6-dimethoxyphenoxy)ethanamine hydrochloride; 2-(2,6-Dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride; 2((2,6-DIMETHOXYPHENOXY-ETHYL)*AMINOMETHYL)-1,4-BENZ; CHEBI:64094;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6188 mL 13.0941 mL 26.1883 mL
5 mM 0.5238 mL 2.6188 mL 5.2377 mL
10 mM 0.2619 mL 1.3094 mL 2.6188 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us