yingweiwo

VIP(6-28)(human, rat, porcine, bovine)

Alias: 69698-54-0; VIP(6-28)(human, rat, porcine, bovine); DTXSID30583194; AKOS034831544; Vasoactive Intestinal Peptide (6-28); DA-59018; PD079205; VIP (6-28) (human, mouse, rat) trifluoroacetate salt;
Cat No.:V29591 Purity: ≥98%
VIP(6-28)(human, rat, porcine, bovine) is a potent exogenous vasoactive intestinal peptide (VIP) antagonist.
VIP(6-28)(human, rat, porcine, bovine)
VIP(6-28)(human, rat, porcine, bovine) Chemical Structure CAS No.: 69698-54-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
VIP(6-28)(human, rat, porcine, bovine) is a potent exogenous vasoactive intestinal peptide (VIP) antagonist.
Biological Activity I Assay Protocols (From Reference)
Targets
VIP/vasoactive intestinal polypeptide; vasodilatory
ln Vitro
VIP(6-28) is a powerful VIP antagonist in the superior cervical ganglion (SCG), and data obtained using this analogue imply that endogenous VIP can participate in positive feedback loops in injured sympathetic neurons, hence amplifying their own Express. When applied to short-term cultures of adult SCG at doses of 10, 30, or 100 μM, VIP(6-28) inhibited the increase in cAMP levels produced by 10 μM VIP by 52%, 64%, or 81%, respectively. VIP(6-28) alone did not alter cAMP levels at any of these concentrations tested. In contrast to its capacity to diminish VIP-stimulated cAMP levels by 64%, adding of 30 μM VIP(6-28) to the culture media did not significantly change cAMP levels assessed after stimulation of adult ganglia with isoproterenol or forskolin (10 μM each). The ability of VIP(6-28) to prevent the VIP-stimulated increase in cAMP levels showed equivalent findings in neuron-enriched and non-neuronal cell-enriched dissociated cultures [1].
ln Vivo
Neurons in the adult rat superior cervical sympathetic ganglion (SCG) dramatically increase their content of vasoactive intestinal peptide (VIP) and its mRNA after axotomy in vivo and after explantation. Because the VIP gene contains a functional cAMP response element, the effects of cAMP-elevating agents on VIP expression were examined. VIP, forskolin, or isoproterenol increased cAMP accumulation in explanted ganglia. Secretin, a peptide chemically related to VIP, or forskolin increased VIP levels above those seen in ganglia cultured in control medium, whereas treatment with VIP or secretin increased the level of peptide histidine isoleucine (PHI), a peptide coded for by the same mRNA that encodes VIP. VIP or forskolin also increased VIP-PHI mRNA. In contrast, isoproterenol did not alter levels of VIP, PHI, or VIP-PHI mRNA. Although VIP or forskolin increased cAMP levels in both dissociated neurons and in non-neuronal cells, isoproterenol significantly stimulated cAMP accumulation only in the latter. VIP6-28 was an effective antagonist of the actions of exogenous VIP on cAMP and VIP-PHI mRNA in neuron-enriched cultures. When adult SCG explants were cultured in defined medium, endogenous VIP immunoreactivity was released. When VIP6-28 was added to such cultures, it significantly inhibited the increase in VIP-PHI mRNA that normally occurs. These data indicate that VIP, or a closely related molecule, produced by adult neurons after injury can enhance the expression of VIP. Such a mechanism may prolong the period during which VIP is elevated after axonal damage. The possibility is also discussed that, because VIP is present in preganglionic neurons in normal animals, its release during periods of increased sympathetic nerve activity could alter VIP expression in the SCG. [1]
References
[1]. Mohney RP, et al. Vasoactive intestinal peptide enhances its own expression in sympathetic neurons after injury. J Neurosci. 1998 Jul 15;18(14):5285-93
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C126H207N37O34S
Molecular Weight
2816.28000
Exact Mass
2814.53
CAS #
69698-54-0
PubChem CID
16133395
Sequence
Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-NH2
H-DL-Phe-DL-xiThr-DL-Asp-DL-Asn-DL-Tyr-DL-xiThr-DL-Arg-DL-Leu-DL-Arg-DL-Lys-DL-Gln-DL-Met-DL-Ala-DL-Val-DL-Lys-DL-Lys-DL-Tyr-DL-Leu-DL-Asn-DL-Ser-DL-xiIle-DL-Leu-DL-Asn-NH2
DL-phenylalanyl-DL-threonyl-DL-alpha-aspartyl-DL-asparagyl-DL-tyrosyl-DL-threonyl-DL-arginyl-DL-leucyl-DL-arginyl-DL-lysyl-DL-glutaminyl-DL-methionyl-DL-alanyl-DL-valyl-DL-lysyl-DL-lysyl-DL-tyrosyl-DL-leucyl-DL-asparagyl-DL-seryl-DL-isoleucyl-DL-leucyl-DL-asparaginamide
SequenceShortening
FTDNYTRLRKQMAVKKYLNSILN-NH2
Appearance
Typically exists as solid at room temperature
LogP
5.535
Hydrogen Bond Donor Count
43
Hydrogen Bond Acceptor Count
41
Rotatable Bond Count
99
Heavy Atom Count
198
Complexity
6170
Defined Atom Stereocenter Count
0
SMILES
NCCCCC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(=O)N)CC(=O)N)=O)CC(C)C)=O)C(CC)C)=O)CO)=O)CC(=O)N)=O)CC(C)C)=O)CC1=CC=C(O)C=C1)=O)CCCCN)=O)CCCCN)=O)C(C)C)=O)C)=O)CCSC)=O)CCC(=O)N)=O)NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(NC(C(CC1=CC=CC=C1)N)=O)C(O)C)=O)CC(=O)O)=O)CC(=O)N)=O)CC1=CC=C(O)C=C1)=O)C(O)C)=O)CCCNC(=N)N)=O)CC(C)C)=O)CCCNC(=N)N)=O
InChi Key
BVEZAVADHLXCKB-UHFFFAOYSA-N
InChi Code
InChI=1S/C126H207N37O34S/c1-15-66(10)99(122(195)157-86(53-64(6)7)113(186)150-83(102(135)175)57-94(132)170)161-120(193)92(61-164)159-117(190)90(59-96(134)172)155-114(187)85(52-63(4)5)152-115(188)87(55-71-34-38-73(167)39-35-71)153-109(182)77(30-20-23-46-128)144-107(180)78(31-21-24-47-129)148-121(194)98(65(8)9)160-103(176)67(11)142-105(178)82(44-50-198-14)147-111(184)81(42-43-93(131)169)146-106(179)76(29-19-22-45-127)143-108(181)79(32-25-48-140-125(136)137)145-112(185)84(51-62(2)3)151-110(183)80(33-26-49-141-126(138)139)149-123(196)101(69(13)166)163-119(192)88(56-72-36-40-74(168)41-37-72)154-116(189)89(58-95(133)171)156-118(191)91(60-97(173)174)158-124(197)100(68(12)165)162-104(177)75(130)54-70-27-17-16-18-28-70/h16-18,27-28,34-41,62-69,75-92,98-101,164-168H,15,19-26,29-33,42-61,127-130H2,1-14H3,(H2,131,169)(H2,132,170)(H2,133,171)(H2,134,172)(H2,135,175)(H,142,178)(H,143,181)(H,144,180)(H,145,185)(H,146,179)(H,147,184)(H,148,194)(H,149,196)(H,150,186)(H,151,183)(H,152,188)(H,153,182)(H,154,189)(H,155,187)(H,156,191)(H,157,195)(H,158,197)(H,159,190)(H,160,176)(H,161,193)(H,162,177)(H,163,192)(H,173,174)(H4,136,137,140)(H4,138,139,141)
Chemical Name
4-[[4-amino-1-[[1-[[1-[[1-[[1-[[1-[[6-amino-1-[[5-amino-1-[[1-[[1-[[1-[[6-amino-1-[[6-amino-1-[[1-[[1-[[4-amino-1-[[1-[[1-[[1-[(1,4-diamino-1,4-dioxobutan-2-yl)amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-[[2-[(2-amino-3-phenylpropanoyl)amino]-3-hydroxybutanoyl]amino]-4-oxobutanoic acid
Synonyms
69698-54-0; VIP(6-28)(human, rat, porcine, bovine); DTXSID30583194; AKOS034831544; Vasoactive Intestinal Peptide (6-28); DA-59018; PD079205; VIP (6-28) (human, mouse, rat) trifluoroacetate salt;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.3551 mL 1.7754 mL 3.5508 mL
5 mM 0.0710 mL 0.3551 mL 0.7102 mL
10 mM 0.0355 mL 0.1775 mL 0.3551 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us