Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
ln Vitro |
In A549 cells, verrucarin J (0, 5, 10, 20, 50 nM; 24 hours) causes apoptosis [1]. The cell growth of A549 and H1793 cells was considerably decreased by verrucarin J (0, 1, 2, 5, 10, 20, 50 nM; 24, 48, 72 hours), with IC50 values of roughly 10 nM and 20 nM after 48 hours of treatment, respectively[1]. For HCT 116 and SW-620 cell growth, verrucarin J (0, 0.1, 0.2, 0.3, 0.4, 0.5 μM; 24 hours) had an IC50 of 300 nM [2]. Verrucarin J (0, 10, 20 nM, 48 hours) suppresses the expression of important CSC-specific genes (ALDH1, LGR5, OCT4, and CD133) in A549 cells and inhibits the Wnt1/β-catenin and Notch1 cancer stem cell (CSC) self-renewal pathway [1]. Compound 2, Verrucarin J, exhibits noteworthy efficacy against Candida albicans and Mucor michelia at 50 μg/disk [3]. Verrucarin J has a comparable impact against the arenavirus Tacaribe and decreases JUNV production by more than 2 log units [4]. Verrucarin J has a cytotoxic concentration 50% (CC50) of 8.2 ng/mL, which has the potential to decrease Vero cell viability [4].
|
---|---|
ln Vivo |
In xenograft animals, intraperitoneal injection of Verrucarin J (0.5 mg/kg) for 4 weeks suppresses the growth of tumors generated by AKT [2]. Verrucarin J is an extremely potent anticancer medication that can stop tumor development and metastasis (0.1, 0.5, 2.0 mg/kg; intraperitoneally administered for three weeks) [5].
|
Animal Protocol |
Animal/Disease Models: 6-8 week old BALB/c athymic nude mice (nu/nu)[2] with pCMV/HCT 116 and AKT/HCT 116 xenografts [2]
Doses: 0.5 mg/kg body weight Route of Administration: intraperitonealResults 4 weeks after injection: diminished expression of pro-survival markers pAKT, Notch1, p65 and Ki67 in all tumors. Animal/Disease Models: Female naked nu/nu (5 to 6 weeks old) mice with A2780 xenografts [5] Doses: 0.1, 0.5, 2.0 mg/kg (Vehicle: 10% DMSO, 90% Tricaprylin Ester) Route of Administration: intraperitoneal (ip) injection three weeks. Results 10 days after injection of A2780 cells: tumor weight reduction (32% compared to control) and reduction in visible metastases at a dose of 0.1 mg/kg. At the dose of 0.5 mg/kg, a significant reduction in peritoneal tumors was seen (61% reduction compared to the control group), and a significant reduction in metastasis was seen. Ovarian tumor weight at 0.5 mg/kg was diminished by 71% compared to vehicle. At a lethal dose of 2 mg/kg, mice developed abdominal swelling, fluid swelling, and subseque |
ADME/Pharmacokinetics |
Metabolism / Metabolites
Trichothecenes are lipophilic and thus easily absorbed through the skin, gut, and pulmonary mucosa. They are metabolized mainly by cytochrome P-450 and trichothecene-specific carboxylesterase activity in the liver, although other tissues such as the kidney, spleen, and intestine also show some metabolic activity. Trichothecenes are metabolically transformed to less toxic metabolites by such reactions as hydrolysis, hydroxylation, de-epoxidation, and glucuronidation. Metabolites are excreted in the urine and feces. (L1910, L1949) |
Toxicity/Toxicokinetics |
Toxicity Summary
Unlike many other mycotoxins, trichothecenes do not require metabolic activation to exert their biological activity, instead directly reacting with cellular components. Trichothecenes are cytotoxic to most eukaryotic cells due to their powerful ability to inhibit protein synthesis. They do this by freely moving across the plasma membrane and binding specifically to ribosomes with high-affinity. Specifically, they interfere with the active site of peptidyl transferase at the 3'-end of large 28S ribosomal RNA and inhibit the initiation, elongation or termination step of protein synthesis, as well as cause polyribosomal disaggregation. Protein synthesis is an essential function in all tissues, but tissues where cells are actively and rapidly growing and dividing are very susceptible to the toxins. Additionally, binding to ribosomes is thought to activate proteins in downstream signalling events related to immune response and apoptosis, such as mitogen-activated protein kinases. This is known as ribotoxic stress response. Trichothecenes may also induce some alterations in membrane structure, leading to increased lipid peroxidation and inhibition of electron transport activity in the mitochondria. They can further induce apoptosis through generation of reactive oxygen species. Further secondary effects of trichothecenes include inhibition of RNA and DNA synthesis, and also inhibition of mitosis. (L1948, L1949, A2962, A2963, A2964, A2980) |
References |
|
Additional Infomation |
Verrucarin J is a trichothecene. Trichothecenes are a very large family of chemically related mycotoxins produced by various species of Fusarium, Myrothecium, Trichoderma, Trichothecium, Cephalosporium, Verticimonosporium, and Stachybotrys. The most important structural features causing the biological activities of trichothecenes are: the 12,13-epoxy ring, the presence of hydroxyl or acetyl groups at appropriate positions on the trichothecene nucleus and the structure and position of the side-chain. They are produced on many different grains like wheat, oats or maize by various Fusarium species such as F. graminearum, F. sporotrichioides, F. poae and F. equiseti. Some molds that produce trichothecene mycotoxins, such as Stachybotrys chartarum, can grow in damp indoor environments and may contribute to health problems among building occupants. (L1948)
See also: Verrucarin J (annotation moved to). |
Molecular Formula |
C27H32O8
|
---|---|
Molecular Weight |
484.53818
|
Exact Mass |
484.21
|
CAS # |
4643-58-7
|
PubChem CID |
6437363
|
Appearance |
White to off-white solid powder
|
Density |
1.297g/cm3
|
Boiling Point |
735.353°C at 760 mmHg
|
Flash Point |
312.2°C
|
LogP |
3.119
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
35
|
Complexity |
1050
|
Defined Atom Stereocenter Count |
6
|
SMILES |
CC1=C[C@@H]2[C@@]3(CC1)COC(=O)/C=C(/CCOC(=O)/C=C/C=C/C(=O)O[C@H]4[C@]3([C@]5(CO5)[C@@H](C4)O2)C)\C
|
InChi Key |
GXCGYHWSYNQVHU-UGAPSZEOSA-N
|
InChi Code |
InChI=1S/C27H32O8/c1-17-8-10-26-15-32-24(30)13-18(2)9-11-31-22(28)6-4-5-7-23(29)35-19-14-21(34-20(26)12-17)27(16-33-27)25(19,26)3/h4-7,12-13,19-21H,8-11,14-16H2,1-3H3/b6-4+,7-5+,18-13+/t19-,20-,21-,25-,26-,27+/m1/s1
|
Chemical Name |
(1R,3R,8R,12E,18E,20E,24R,25S,26S)-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,12,18,20-tetraene-26,2'-oxirane]-11,17,22-trione
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0638 mL | 10.3191 mL | 20.6381 mL | |
5 mM | 0.4128 mL | 2.0638 mL | 4.1276 mL | |
10 mM | 0.2064 mL | 1.0319 mL | 2.0638 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.