yingweiwo

Tolbutamide sodium

Alias: TOLBUTAMIDE SODIUM; Tolbutamide sodium salt; 473-41-6; Sodium tolbutamide; Orinase Diagnostic; Sodium butamide; Sodium orinase; Tolbutamide sodium, sterile;
Cat No.:V41310 Purity: ≥98%
Tolbutamide sodium (also known as HLS 831; trade names: Artosin, Diabetol, Orinase) is a potent and selective inhibitor of potassium channel, which is originally used as an oral hypoglycemic medication.
Tolbutamide sodium
Tolbutamide sodium Chemical Structure CAS No.: 473-41-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Tolbutamide sodium:

  • Tolbutamide (HLS-831)
  • Tolbutamide-d9 (Tolbutamide d9)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Tolbutamide sodium (also known as HLS 831; trade names: Artosin, Diabetol, Orinase) is a potent and selective inhibitor of potassium channel, which is originally used as an oral hypoglycemic medication. The drug may be used for the management of type II diabetes. Tolbutamide has been reported to inhibit both the basal and the cyclic AMP-stimulated protein kinase activities with an IC50 value of 4mM for cyclic AMP-dependent kinase activity. In addition, Tolbutamide has been revealed to inhibit both soluble and membrane-bound protein kinase from canine heart.

Biological Activity I Assay Protocols (From Reference)
Targets
K/potassium channel; CYP2C9; antidiabetic
ln Vitro
In vitro activity: Tolbutamide belongs to a class of medications called sulfonylureas. Tolbutamide lowers blood sugar by causing the pancreas to produce insulin (a natural substance that is needed to break down sugar in the body) and helping the body use insulin efficiently. This medication will only help lower blood sugar in people whose bodies produce insulin naturally. Tolbutamide is not used to treat type 1 diabetes (condition in which the body does not produce insulin and, therefore, cannot control the amount of sugar in the blood) or diabetic ketoacidosis (a serious condition that may occur if high blood sugar is not treated). Tolbutamide inhibits both the basal and the cyclic AMP-stimulated protein kinase activities and the IC50 of Tolbutamide is 4 mM. Similar Tolbutamide concentrations are required for half maximal inhibition of in vitro lipolysis induced by hormones (norepinephrine and ACTH) or by dibutyryl cyclic AMP plus theophylline. Tolbutamide also inhibits both soluble and membrane-bound protein kinase from canine heart. The Tolbutamide inhibition of adipose tissue cyclic AMP-dependent protein kinase is one possible explanation for the antilipolytic effects of this drug. Tolbutamide inhibits C6-glioma cell proliferation by increasing Cx43, which correlates with a reduction in pRb phosphorylation due to the up-regulation of the Cdk inhibitors p21 and p27. Cytosolic nucelotides enhance the Tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors.
ln Vivo
450 mg Tolbutamide/kg/day given for 7 days significantly increases the binding of insulin to isolated adipocytes. The binding curves reflect an increase in the number of receptor sites rather than in the affinity. The effect is associated with an enhanced response to insulin of the adipose tissue, since the fat cells obtained from animals treated with Tolbutamide convert significantly more glucose to lipids in the presence of insulin than those obtained from the control group. However, the augmentation of insulin binding sites is observed only at a large tolbutamide dosage, which reduces the pancreatic insulin content, the secretory response of the isolated pancreas, and the serum insulin levels. Smaller doses, sufficient to produce metabolic effects via a stimulation of insulin secretion, do not provide additional insulin binding sites.
Cell Assay
In the present work, researchers show that tolbutamide and dbcAMP increase the synthesis of the tumor suppressor protein Cx43 and that they decrease the level of Ki-67, a protein expressed when cells are proliferating. These effects were accompanied by a reduction in the phosphorylation of pRb, mainly on Ser-795, a residue critical for the control of cell proliferation. The decrease in the phosphorylation of pRb is not likely to be mediated by a reduction in the levels of D-type cyclins, since instead of decreasing the expression of cyclins, D1 and D3 increased slightly after treatment with tolbutamide or dbcAMP. However, the Cdk inhibitors p21 and p27 were up-regulated after treatment with tolbutamide and dbcAMP, suggesting that they would be involved in the decrease in pRb phosphorylation. When Cx43 was silenced by siRNA, neither tolbutamide nor dbcAMP were able to up-regulate p21 and consequently to reduce glioma cell proliferation, as judged by Ki-67 expression. In conclusion, tolbutamide and dbcAMP inhibit C6-glioma cell proliferation by increasing Cx43, which correlates with a reduction in pRb phosphorylation due to the up-regulation of the Cdk inhibitors p21 and p27[2].
Animal Protocol
The functional state of beta cells may influence the rate of their destruction in Type 1 (insulin-dependent) diabetes mellitus. We examined the effect of diazoxide, which inhibits insulin secretion, or tolbutamide, which stimulates insulin secretion, upon the incidence of diabetes in the non-obese-diabetic (NOD) mouse. Female mice were treated from 3-30 weeks of age with diet containing diazoxide 250 mg.kg-1 or tolbutamide 125 mg.kg-1. The cumulative incidence of diabetes at 35 weeks was similar in the diazoxide (16 of 24) and control (18 of 24) groups, but reduced in the tolbutamide group (10 of 23, p < 0.04 vs control group). In a second experiment, treatment was started from 9 weeks of age, by which time insulitis is already present. The cumulative incidence of diabetes at 35 weeks was 16 of 24 in controls, 15 of 24 on diazoxide and 11 of 24 on tolbutamide (p = NS vs control). A third experiment compared the effect of treatment from 3 weeks with control diet or diet containing tolbutamide 125 mg.kg-1 or 500 mg.kg-1. Diabetes was reduced by tolbutamide treatment, with a cumulative incidence of 25 of 31 in controls, 18 of 30 on tolbutamide 125 mg.kg-1 (p < 0.04) and 14 of 32 on 500 mg.kg-1 (p < 0.002), although the difference between the two treatment groups failed to reach statistical significance. A fourth experiment showed that treatment from 3-12 weeks with diazoxide 1000 mg.kg-1 increased the extent of insulitis compared with controls and animals treated with tolbutamide 500 mg.kg-1.[3]
Pretreatment of pregnant BALB/c mice with several low doses of tolbutamide protected against the fetolethal effects of a high dose. Pregnant mice were given single ip injections of 400 mg/kg in saline on day 13; 100 mg/kg/day on days 10, 11, 12, and 13; or 100 mg/kg/day on days 10, 11, and 12 and 400 mg/kg on day 13. On day 16 the single-treatment group had a significantly higher resorption rate than any other group. Fetolethality was not related to hypoglycemia. The protective effect of pretreatment may have been due to induction of maternal microsomal enzymes.[4]
ADME/Pharmacokinetics
Absorption
Readily absorbed following oral administration. Tolbutamide is detectable in plasma 30-60 minutes following oral administration of a single dose with peak plasma concentrations occurring within 3-5 hours. Absorption is unaltered if taken with food but is increased with high pH.
Route of Elimination
Unchanged drug and metabolites are eliminated in the urine and feces. Approximately 75-85% of a single orally administered dose is excreted in the urine principally as the 1-butyl-3-p-carboxyphenylsulfonylurea within 24 hours.

AFTER ORAL ADMIN, SULFONYLUREAS ARE RAPIDLY ABSORBED. /SULFONYLUREAS/

TOLBUTAMIDE CAN BE DETECTED IN BLOOD WITHIN 30 MIN AFTER ORAL ADMIN; PEAK CONCN ARE REACHED WITHIN 3 TO 5 HR. .../IT/ IS BOUND TO PLASMA PROTEINS. ... HALF-LIFE OF TOLBUTAMIDE IS ABOUT 5 HR.

IN CONTRAST TO STUDIES REPORTED IN ANIMALS, METABOLIC CLEARANCE OF...TOLBUTAMIDE IN MAN HAS BEEN SHOWN TO BE UNALTERED BY FASTING.

Excreted (percentage)...100
Metabolism / Metabolites Metabolized in the liver principally via oxidation of the p-methyl group producing the carboxyl metabolite, 1-butyl-3-p-carboxyphenylsulfonylurea. May also be metabolized to hydroxytolbutamide. Tolbutamide does not undergo acetylation like antibacterial sulfonamides as it does not have a p-amino group.

View More

...MAJOR TOLBUTAMIDE METAB IN MAN HAS BEEN IDENTIFIED AS 1-BUTYL-3-P-CARBOXYPHENYLSULFONYLUREA... 1-BUTYL-3-P-HYDROXYMETHYLPHENYLSULFONYLUREA IS ALSO FORMED IN SMALL AMT.

IN RAT, MAJOR URINARY METAB, 1-BUTYL-3-P-HYDROXYMETHYLPHENYLSULFONYLUREA COMPRISED 75% OF DOSE, BUT SMALL AMT OF 1-BUTYL-3-P-CARBOXYPHENYLSULFONYLUREA & P-TOLYLSULFONYLUREA, COMPRISING 5% OF DOSE, WERE ALSO PRESENT.

ALTHOUGH 1-BUTYL-3-P-HYDROXYMETHYLPHENYLSULFONYLUREA HAS BEEN REPORTED AS PRINCIPAL METAB IN CAT.../IT IS CLAIMED/ THAT CAT METABOLIZES TOLBUTAMIDE IN SAME WAY AS DOG. .../IT HAS BEEN SHOWN/ THAT TOLBUTAMIDE IS TRANSFORMED INTO 1-BUTYL-3-P-CARBOXYPHENYLSULFONYLUREA IN GUINEA PIGS & RABBITS.

IN CONTRAST TO RATS, RABBITS & MAN, DOGS METABOLIZE TOLBUTAMIDE...INTO P-TOLYLSULFONYLUREA & P-TOLYLSULFONAMIDE BY MECHANISM INVOLVING HYDROLYSIS.

Tolbutamide has known human metabolites that include 4-Hydroxytolbutamide.


Biological Half-Life
Approximately 7 hours with interindividual variations ranging from 4-25 hours. Tolbutamide has the shortest duration of action, 6-12 hours, of the antidiabetic sulfonylureas.

Half-life...3-25 /hours/

Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Tolbutamide is no longer marketed in the United States. It is excreted into breastmilk in small amounts that should cause no harm to the breastfed infant. Monitor breastfed infants for signs of hypoglycemia such as jitteriness, excessive sleepiness, poor feeding, seizures cyanosis, apnea, or hypothermia. If there is concern, monitoring of the breastfed infant's blood glucose is advisable during maternal therapy with hypoglycemic agents.

◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Interactions
SULFAPHENAZOLE ENHANCES ACTION OF TOLBUTAMIDE & MAY CAUSE SYMPTOMS OF SEVERE HYPOGLYCEMIA IN DIABETIC PT. IT IS UNCLEAR WHETHER THIS INTERACTION ALSO OCCURS WITH OTHER SULFONAMIDES OR SULFONYLUREA COMPD.

HYPOGLYCEMIC ACTIVITY OF TOLBUTAMIDE MAY BE ENHANCED BY CONCURRENT ADMIN OF PHENYLBUTAZONE, & DOWNWARD ADJUSTMENT OF TOLBUTAMIDE DOSAGE MAY BE INDICATED. ... ALTHOUGH NOT DOCUMENTED, OXYPHENBUTAZONE & POSSIBLY SULFINPYRAZONE CAN BE EXPECTED TO INTERACT SIMILARLY TO PHENYLBUTAZONE.

SINCE MAO INHIBITORS MAY ENHANCE HYPOGLYCEMIC ACTION OF INSULIN IN ANIMALS & IN HUMAN DIABETIC PT, CONCURRENT ADMIN OF MAO INHIBITORS & INSULIN TO DIABETIC SUBJECTS MAY BE POTENTIALLY DANGEROUS. .../TOLBUTAMIDE HAS/ BEEN REPORTED TO INTERACT WITH MAO INHIBITORS.
View More

National Toxicology Program Studies
A bioassay of tolbutamide for possible carcinogenicity was conducted by admin the test material in the diet to Fischer 344 rats and B6C3F1 mice. Groups of 35 rats of each sex were admin tolbutamide at one of two doses, either 12,000 or 24,000 ppm, 5 days/wk for 78 wk, then observed for an additional 28 wk. Matched control groups consisted of 15 untreated rats of each sex. All surviving rats were /sacrificed/ at 102-104 wk. Groups of 35 mice of each sex were admin tolbutamide at one of two doses, either 25,000 or 50,000 ppm, 5 days/wk for 78 wk, then observed for an additional 24-26 wk. Matched control groups consisted of 15 untreated mice of each sex. All surviving mice were /sacrificed/ at 102-104 wk. Mean body weights of the treated rats and mice were lower than those of the corresponding matched controls during the entire study; however, survival was not significantly affected by treatment in either species. In both sexes of both species, survival was considered to be adequate for meaningful statistical analyses of the incidence of tumors. In both the rats and mice, a variety of neoplasms were found in both the tolbutamide treated and control groups. None of the neoplasms were present in statistically significant incr incidence in treated groups of either species as compared with control groups and were not considered to be cmpd related. It is concluded that under the conditions of this bioassay, tolbutamide was not carcinogenic for either Fischer 344 rats or B6C3F1 mice. Levels of Evidence of Carcinogenicity: Male Rats: Negative; Female Rats: Negative; Male Mice: Negative; Female Mice: Negative.


Protein Binding
Approximately 95% bound to plasma proteins.

References

[1]. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493-9.

[2]. Glucose and tolbutamide induce apoptosis in pancreatic beta-cells. A process dependent on intracellular Ca2+ concentration. J Biol Chem. 1998 Dec 11;273(50):33501-7.

Additional Infomation
Tolbutamide Sodium is the sodium salt form of tolbutamide, a short-acting, first-generation sulfonylurea with hypoglycemic activity. Compared to second-generation sulfonylureas, tolbutamide is more likely to cause adverse effects, such as jaundice. This agent is rapidly metabolized by CYPC29.
See also: Tolbutamide (has active moiety).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H17N2O3S-.NA+
Molecular Weight
292.32978
Exact Mass
270.104
CAS #
473-41-6
Related CAS #
Tolbutamide;64-77-7;Tolbutamide-d9;1219794-57-6
PubChem CID
23690448
Appearance
Typically exists as solid at room temperature
Density
1.184g/cm3
Index of Refraction
1.532
LogP
3.459
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
5
Heavy Atom Count
19
Complexity
360
Defined Atom Stereocenter Count
0
SMILES
[Na+].CCCCNC([N-]S(C1C=CC(C)=CC=1)(=O)=O)=O
InChi Key
QKHDBRQBSNZFAK-UHFFFAOYSA-M
InChi Code
InChI=1S/C12H18N2O3S.Na/c1-3-4-9-13-12(15)14-18(16,17)11-7-5-10(2)6-8-11;/h5-8H,3-4,9H2,1-2H3,(H2,13,14,15);/q;+1/p-1
Chemical Name
sodium;butylcarbamoyl-(4-methylphenyl)sulfonylazanide
Synonyms
TOLBUTAMIDE SODIUM; Tolbutamide sodium salt; 473-41-6; Sodium tolbutamide; Orinase Diagnostic; Sodium butamide; Sodium orinase; Tolbutamide sodium, sterile;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4208 mL 17.1040 mL 34.2079 mL
5 mM 0.6842 mL 3.4208 mL 6.8416 mL
10 mM 0.3421 mL 1.7104 mL 3.4208 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05097716 Completed
Has Results
Drug: Ritlecitinib
Drug: Tolbutamide
Healthy Volunteers Pfizer November 2, 2021 Phase 1
NCT01185548 Terminated
Has Results
Drug: Tolbutamide
Drug: Tasisulam
Lymphoma
Advanced Cancer
Eli Lilly and Company July 2010 Phase 1
NCT03291288 Completed
Has Results
Drug: Tolbutamide
Drug: Midazolam
Drug Interaction Potential Daiichi Sankyo February 26, 2018 Phase 1
NCT03716427 Completed Drug: CT1812
Drug: tolbutamide
Healthy Volunteers Cognition Therapeutics November 10, 2016 Phase 1
Contact Us