Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Targets |
TLR5/Toll-like receptor 5/flagellin complex: IC50 = 0.85 μM[1]
|
---|---|
ln Vitro |
TH1020 blocks TLR5/flagellin complex-mediated downstream signaling. It is proposed that TH1020 competes with flagellin and breaks its bond with TLR5. TLR5-mediated TNF-α is nearly entirely eliminated by TH1020 at 0.37 μM [TH1020 (0.5 μM) almost totally removes IL-17C in X medium C83901-infected IPEC-J2 cells [2]. When IPEC-1 is infected with C83091, TLR5 strongly suppresses it with 0.5 μM of TH1020. Porcine β-defensin (pBD)-2, claudin-1, and claudin-2 mRNA expression in J2 cells [2].
|
Enzyme Assay |
Protein-protein interactions have been regarded as "undruggable" despite their importance in many biological processes. The complex formed between host toll-like receptor 5 (TLR5) and flagellin, a globular protein that is the main component of a bacterial flagellum, plays a vital role in a number of pathogen defenses, immunological diseases and cancers. Through high-throughput screening, we identified two hits with a common pharmacophore, which were used to successfully develop a series of small-molecule probes as novel inhibitors of flagellin binding to TLR5. In a multitude of assays, 4-((4-benzyl-5-(pyridin4yl)-4H-1,2,4-triazol-3-yl)thio)pyrido[3',2':4,5]thieno[3,2-d]pyrimidine (TH1020) was identified as a potent antagonist of TLR5 signaling with promising activity (IC50 =0.85±0.12 μm) and specificity. Furthermore, TH1020 was shown to repress the expression of downstream TNF-α signaling pathways mediated by the TLR5/flagellin complex formation. Based on molecular docking simulation, TH1020 is suggested to compete with flagellin and disrupt its association with TLR5. TH1020 provides a much-needed molecular probe for studying this important protein-protein interaction and a lead compound for identifying novel therapeutics targeting TLR5.[1]
|
Cell Assay |
Two hours before bacterial inoculation, IPEC-J2 monolayers were incubated with 0.5 μM oligodeoxyribonucleotide (ODN 2088; blocks TLR7/8/9 signaling as described previously), TH1020 (inhibits TLR5 signaling as described previously), 20 or 40 ng/mL IL-17C and then inoculated for 24 h with the different bacterial strains as described above. As flagellin has been reported to induce IL-17C production in several epithelial cells, IPEC-J2 monolayers were also stimulated with flagellin (100 ng/mL) in the presence or absence of TH1020. Then, the cells and/or culture supernatant were collected at 4 h and 24 h post stimulation, respectively. Subsequently, cells were harvested and resuspended in TRIzol Reagent or directly lysed in RIPA lysis buffer for Western blotting. The cell supernatants were collected and stored at −80 °C for later use.[2]
As TH1020 and ODN 2088 were dissolved in DMSO and TE buffer, respectively, the toxic effects of these two solvents on IPEC-J2 monolayers were also investigated during the long incubation times using the propidium iodide assay. Briefly, IPEC-J2 monolayers were cultured at 24-well plates at a density of 5 × 105 cells per well. The cells were then treated with TH1020 and ODN 2088 at 0.5 and 5 μM and incubated in 5% humidified carbon dioxide at 37 °C for 24 h. An aliquot of 1 μL of 500 μg/mL PI was added to each well and incubated for 60 min at room temperature. The fluorescence was measured using a multi-detection microplate reader with an excitation wavelength of 544 nm and an emission wavelength of 612 nm. In the first 60-min incubation period, measurements were taken at 15-min intervals to obtain a background level for the PI solution in the untreated cells. Then, measurements were taken at 30-min intervals for 23 h. At the end of the 24 h, EtOH (100%) was added to each well in order to induce maximal death, and the maximal PI fluorescence were taken afterwards. [2] |
References |
|
Additional Infomation |
Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. The IL-17 cytokine family is well known to play important roles in the host defense against bacterial infections at the mucosa. Previously, we reported the potential role of IL-17A in clearing an ETEC infection in piglets. IL-17C, another member of the IL-17 family, is highly expressed in the intestinal epithelium, however, its role during an ETEC infection is still unclear. In this study, we demonstrate that F4+ ETEC induce IL-17C mRNA and protein expression in intestinal tissues as well as in porcine intestinal epithelial cells (IPEC-J2). This IL-17C production is largely dependent on TLR5 signaling in IPEC-J2 cells. Both F4+ ETEC infection and exogenous IL-17C increased the expression of antimicrobial peptides and tight junction proteins, such as porcine beta-defensin (pBD)-2, claudin-1, claudin-2 and occludin in IPEC-J2 cells. Taken together, our data demonstrate that TLR5-mediated IL-17C expression in intestinal epithelial cells enhances mucosal host defense responses in a unique autocrine/paracrine manner in the intestinal epithelium against ETEC infection.[2]
|
Molecular Formula |
C23H15N7S2
|
---|---|
Molecular Weight |
453.542100191116
|
Exact Mass |
453.083
|
Elemental Analysis |
C, 60.91; H, 3.33; N, 21.62; S, 14.14
|
CAS # |
1841460-82-9
|
PubChem CID |
124203921
|
Appearance |
Typically exists as Light yellow to yellow solids at room temperature
|
LogP |
4.3
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
8
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
32
|
Complexity |
615
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
CBBXTGWSGPEJEE-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H15N7S2/c1-2-5-15(6-3-1)13-30-20(16-8-11-24-12-9-16)28-29-23(30)32-22-19-18(26-14-27-22)17-7-4-10-25-21(17)31-19/h1-12,14H,13H2
|
Chemical Name |
6-[(4-benzyl-5-pyridin-4-yl-1,2,4-triazol-3-yl)sulfanyl]-8-thia-3,5,10-triazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5,10,12-hexaene
|
Synonyms |
TH 1020; TH-1020; 1841460-82-9; TH1020; 4-[[4-(Phenylmethyl)-5-(4-pyridinyl)-4H-1,2,4-triazol-3-yl]thio]-pyrido[3',2'; 4-((4-Benzyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)pyrido[3',2':4,5]thieno[3,2-d]pyrimidine; CHEMBL4795753; 4-((4-Benzyl-5-(pyridin4yl)-4H-1,2,4-triazol-3-yl)thio)pyrido[3',2':4,5]thieno[3,2-d]pyrimidine; TH 1020; TH1020
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~2 mg/mL (~4.41 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2049 mL | 11.0244 mL | 22.0488 mL | |
5 mM | 0.4410 mL | 2.2049 mL | 4.4098 mL | |
10 mM | 0.2205 mL | 1.1024 mL | 2.2049 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.