TAK-659 2HCl

Alias: TAK659, TAK-659, TAK 659, TAK-659 2HCl, TAK659 dihydrochloride
Cat No.:V3185 Purity: ≥98%
TAK-659 2HCl (TAK659 dihydrochloride) is a novel, potent, highlyselective and orally bioavailable spleen tyrosine kinase (Syk) inhibitor with anticancer effects.
TAK-659 2HCl Chemical Structure CAS No.: 1312691-41-0
Product category: Others 2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of TAK-659 2HCl:

  • TAK-659 HCl
  • TAK-659
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

TAK-659 2HCl (TAK659 dihydrochloride) is a novel, potent, highly selective and orally bioavailable spleen tyrosine kinase (Syk) inhibitor with anticancer effects. It inhibits Syk with an IC50 of 3.2 nM. TAK-659 shows inhibition toward a SYK-dependent cell line (OCILY10) in a cell proliferation assay. TAK-659 is shown to be able to inhibit the growth of FLT3-ITD dependent cell lines, MV4-11 and MOLM-13 while the WT FLT3 RS4-11 (ALL cell line) and RA1 (Burkitt’s Lymphoma cell line) are not sensitive toward TAK-659. The sensitivity to TAK-659 is associated with mutations impacting SYK activity in B cell lymphomas, whereas TAK-659 is not cytotoxic for adherent primary or solid tumor cell lines. TAK-659 inhibits the microenvironment-induced activation of Syk and downstream signaling molecules, without inhibiting the protein homologue ZAP-70 in T cells. Importantly, the pro-survival, proliferative, chemoresistant and activation effects promoted by the microenvironment are abrogated by TAK-659, which furthermore blocks CLL cell migration toward BMSC, CXCL12, and CXCL13.

Biological Activity I Assay Protocols (From Reference)
ln Vitro

In vitro activity: In a cell proliferation assay, TAK-659 shows inhibition toward a SYK-dependent cell line (OCILY10). TAK-659 is shown to be sensitive toward FLT3-ITD dependent cell lines, MV4-11 and MOLM-13 while the WT FLT3 RS4-11 (ALL cell line) and RA1 (Burkitt’s Lymphoma cell line) are not sensitive toward TAK-659. The sensitivity to TAK-659 is associated with mutations impacting SYK activity in B cell lymphomas, whereas TAK-659 is not cytotoxic for adherent primary or solid tumor cell lines. TAK-659 inhibits the microenvironment-induced activation of Syk and downstream signaling molecules, without inhibiting the protein homologue ZAP-70 in T cells. Importantly, the pro-survival, proliferative, chemoresistant and activation effects promoted by the microenvironment are abrogated by TAK-659, which furthermore blocks CLL cell migration toward BMSC, CXCL12, and CXCL13.


Kinase Assay: TAK-659 hydrochloride is a potent, selective and orally available spleen tyrosine kinase (Syk) inhibitor with an IC50 of 3.2 nM.


Cell Assay: Cells are maintained at 37°C in a humidified atmosphere containing 5-8% CO2. In a panel of hematological and solid tumor cell lines, inhibition of cell viability is determined using the soluble tetrazolium salt, MTS. Cells are seeded in 96-well tissue culture plates and are incubated at 37°C/5% CO2 for 24 hours prior to addition of compounds or DMSO vehicle. After 72 or 96 hours of incubation with compounds, MTS conversion by metabolically active cells is determined by measuring the OD490 nm of the wells using a Thermomax microplate reader. To generate concentration-response curves, cells are treated in duplicate with a range of serial compound dilutions. Prior to addition to cells, compound dilutions are prepared in DMSO. Equal amounts of DMSO are added to cells (final concentration is 0.5%). After background correction and normalization against DMSO-treated cells, EC50 values are calculated by curve-fitting these cell viability results using nonlinear regression analysis.

ln Vivo
TAK-659 is currently undergoing Phase I clinical trials for advanced solid tumor and lymphoma malignancies, a Phase Ib study in advanced solid tumors in combination with nivolumab, and PhIb/II trials for relapsed/refractory AML. TAK-659 blocks anti-IgD (immune-globulin D antibody) stimulated CD86 expression in mouse peripheral B cells in vivo. In the OCI-LY10 xenograft and DLBCL PHTX-95L (primary human tumor graft from DLBCL patient) mouse models, TAK-659 demonstrates potent tumor growth inhibition (TGI) after 20 days of treatment. In the FLT3-dependent MV4-11 xenograft model, TAK-659 shows tumor regression at 60 mg/kg daily after 20 days of dosing
Animal Protocol
0.5% carboxymethylcellulose (CMC); 10, 30, 60 mg/kg QD; by oral gavage
Athymic nude mice
References
2016 Dec 15;26(24):5947-5950;2017 Jan 3;8(1):742-756.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H21FN6.2HCL
Molecular Weight
417.31
CAS #
1312691-41-0
Related CAS #
1312691-41-0 (2HCl);1952251-28-3 (HCl);1312691-33-0;
SMILES
O=C1NCC2=C1C(C3=CN(C)N=C3)=NC(N[ C@H]4[C@@H](N)CCCC4)=C2F.[H]Cl.[H]Cl
Synonyms
TAK659, TAK-659, TAK 659, TAK-659 2HCl, TAK659 dihydrochloride
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: N/A
Water:N/A
Ethanol: N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3963 mL 11.9815 mL 23.9630 mL
5 mM 0.4793 mL 2.3963 mL 4.7926 mL
10 mM 0.2396 mL 1.1982 mL 2.3963 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Syk inhibition by TAK-659 downregulates BCR signalling in Ramos and primary CLL cells.2017 Jan 3;8(1):742-756.

  • TAK-659 2HCl


    TAK-659 induces higher degree of apoptosis than R406 in primary CLL cells.2017 Jan 3;8(1):742-756.

  • TAK-659 2HCl


    Treatment with TAK-659 effectively abrogates the co-culture-induced proliferation and activation of primary CLL cells.2017 Jan 3;8(1):742-756.

  • TAK-659 2HCl


    Syk inhibition by TAK-659 inhibits chemotaxis of primary CLL cells toward CXCL12, CXCL13 and BMSC.2017 Jan 3;8(1):742-756.

  • TAK-659 2HCl


    The combination of TAK-659 with fludarabine, ibrutinib or idelalisib synergistically induces apoptosis in proliferative CLL cells.2017 Jan 3;8(1):742-756.

  • TAK-659 2HCl


    TAK-659 does not inhibit TCR downstream signaling or expression of activation molecules in T cells.2017 Jan 3;8(1):742-756.

Contact Us Back to top