yingweiwo

Stearyl alcohol

Alias: Siponol S; Sipol S; Stearyl alcohol
Cat No.:V15324 Purity: ≥98%
1-Hydroxyoctadecane is an endogenously produced metabolite.
Stearyl alcohol
Stearyl alcohol Chemical Structure CAS No.: 112-92-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
Other Sizes

Other Forms of Stearyl alcohol:

  • 1-Hydroxyoctadecane-d37
  • 1-Hydroxyoctadecane-d2
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
1-Hydroxyoctadecane is an endogenously produced metabolite.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Stearyl alcohol is found naturally in various mammalian tissues ... Results from several studies indicate that stearyl alcohol is poorly absorbed from the gastrointestinal tract.
Several studies indicate that /1-octadecanol/ is poorly absorbed from the gastrointestinal tract. The entry of 14C-octadecanol into the thoracic lymph duct of the Sprague-Dawley rat was reported. Lymph flows and blood were monitored for radioactivity in different intervals following dosing. Intestinal radioactivity was determined in the intestinal homogenate which showed the percent absorbed radioactivity in the lymph was 56.6 +/- 14.0. Of this, more than half was found in the triglycerides of the lymph, 6 to 13 % in the phospholipids, 2 to 8% as the cholesterol esters, and 4 to 10% unchanged octadecanol. 90% of octadecanol was found in the lipomicrom fraction of the blood. The absorption of the compound appeared to be a function of its lipid solubility.
Metabolism / Metabolites
Stearyl alcohol ... is used in the biosynthesis of lipids and other naturally occurring cellular constituents and enters metabolic pathways for energy production. This fatty alcohol is readily converted to stearic acid, another common constituent of mammalian tissue.
From the absorbed fraction more than half was metabolized to triglycerides, 6-13% to phospholipids, 2- 8% to cholesterol esters, and 4-10% remained as unchanged octadecanol after 24h period, from dosing.
Toxicity/Toxicokinetics
Non-Human Toxicity Values
LD50 Rat oral >5000 - 8000 mg/kg
LD50 Rabbit dermal >3 g/kg
LD50 Rat oral 20 g/kg
Additional Infomation
Octadecan-1-ol is a long-chain primary fatty alcohol consisting of a hydroxy function at C-1 of an unbranched saturated chain of 18 carbon atoms. It has a role as a plant metabolite, a human metabolite and an algal metabolite. It is a long-chain primary fatty alcohol and an octadecanol.
Stearyl alcohol has been reported in Camellia sinensis, Apis, and other organisms with data available.
See also: Alcohols, C18-32 (annotation moved to).
Mechanism of Action
... Ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol had essentially the same effects on the mitochondrial ultrastructure: a mixed population of small and enlarged mitochondria with poorly developed cristae; 1-dodecanol induced ultrastructural changes of mitochondria of two distinct types: a mixed population of small and enlarged mitochondria with poorly developed cristae in some hepatocytes and remarkably enlarged mitochondria with well-developed cristate in others; and 1-octadecanol induced remarkably enlarged mitochondria in all hepatocytes.
... The reactivity of the fatty alcohols with cetrimide decreased with increasing chain length although branching on the tetradecanol and hexadecanol resulted in a higher reactivity. Adding 1-octadecanol to 1-hexadecanol resulted in an increased reactivity rising to a maximum for mixtures containing 20-40% w/w 1-octadecanol.
... Peak inhibition was recorded with saturated primary alcohols (64 microM) varying in chain length from 16 to 19 carbon atoms. The unsaturated alcohols (oleyl, linoleyl, and linolenyl) and the secondary alcohol (pentadecan-2-ol) were considerably less effective growth inhibitors. Stearic and palmitic acids were also ineffective.
After incubation of stationary phase Leishmania donovani with [1-14C]octadecanol, about 70% of the precursor was taken up within 3 hr. Wax esters and acyl moieties of glycerolipids contained most of the 14C-activity from 3 to 6 hr, because octadecanol was partly oxidized to stearate. Ether moieties were only weakly labeled. After 40 hr, 1-0-alkyl and 1-0-alk-1'-enyl diacylglycerols as well as 1-0-alkyl and 1-0-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamines contained nearly all of the radioactivity. Most of the label in the neutral ether lipids was located in the alkyl ether side chain, whereas, in the phosphatidylethanolamine fraction, most of the label was found in the alkenyl ether side chain.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H38O
Molecular Weight
270.5
Exact Mass
270.292
CAS #
112-92-5
Related CAS #
1-Hydroxyoctadecane-d37;204259-62-1;1-Hydroxyoctadecane-d2;86369-69-9
PubChem CID
8221
Appearance
White to off-white solid powder
Density
0.812
Boiling Point
336 ºC
Melting Point
56-59 °C(lit.)
Flash Point
185 ºC
Vapour Pressure
0.0±1.6 mmHg at 25°C
Index of Refraction
1.451
LogP
8.31
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
16
Heavy Atom Count
19
Complexity
145
Defined Atom Stereocenter Count
0
InChi Key
GLDOVTGHNKAZLK-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H38O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19/h19H,2-18H2,1H3
Chemical Name
octadecan-1-ol
Synonyms
Siponol S; Sipol S; Stearyl alcohol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~5 mg/mL (~18.48 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.6969 mL 18.4843 mL 36.9686 mL
5 mM 0.7394 mL 3.6969 mL 7.3937 mL
10 mM 0.3697 mL 1.8484 mL 3.6969 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us