Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Purity: ≥98%
SB-267268 is a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. SB-267268 reduced pathologic angiogenesis in ROP mice by approximately 50% and had no effect on developmental retinal angiogenesis in shams. Both VEGF and VEGFR-2 mRNA were upregulated in the inner retina of ROP mice and reduced with SB-267268. Nonpeptidic inhibition of alpha(v)beta3 and alpha(v)beta5 integrins is effective in ROP and may be a suitable anti-angiogenic therapy for other ischemic retinal pathologies.
ln Vitro |
SB-267268 exhibits a significantly reduced inhibitory impact on αvβ6 integrin in humans, mice, and rats. With an IC50 value of 12 nM, SB-267268 prevents αvβ3-transfected HEK293 cells from adhering to microtiter plate wells coated with arginine-glycine-aspartate (RGD)-containing matrix protein. Additionally, SB-267268 blocks the migration of rat and human aortic smooth muscle cells (SMC) mediated by vitronectin, with IC50 values of roughly 3.6 nM and 12.3 nM, respectively [1].
|
---|---|
ln Vivo |
SB-267268 (60 mg/kg; intraperitoneally injected twice daily) lowers intraretinal vascular profile (BVP) by 50% [1]. In ROP mice treated with SB-267268, VEGF and VEGFR-2 gene expression were reduced in the inner nuclear layer (INL) and ganglion cell layer (GCL) [1].
|
Animal Protocol |
Animal/Disease Models: Pregnant female C57BL/6 mice (ROP mice) [1]
Doses: 60 mg/kg Route of Administration: intraperitoneal (ip) injection; twice (two times) daily Experimental Results: Inner retinal blood vessel profile (BVP) diminished by 50%. |
References |
Molecular Formula |
C22H24F3N3O4
|
---|---|
Molecular Weight |
451.438876152039
|
Exact Mass |
451.171
|
CAS # |
205678-26-8
|
Related CAS # |
205678-26-8
|
PubChem CID |
9955461
|
Appearance |
White to off-white solid powder
|
LogP |
3.1
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
32
|
Complexity |
634
|
Defined Atom Stereocenter Count |
1
|
SMILES |
FC(CN1C([C@H](CC(=O)O)CC2C=CC(=CC=2C1)OCCCNC1C=CC=CN=1)=O)(F)F
|
InChi Key |
PVDGZHKJXXVONO-INIZCTEOSA-N
|
InChi Code |
InChI=1S/C22H24F3N3O4/c23-22(24,25)14-28-13-17-11-18(32-9-3-8-27-19-4-1-2-7-26-19)6-5-15(17)10-16(21(28)31)12-20(29)30/h1-2,4-7,11,16H,3,8-10,12-14H2,(H,26,27)(H,29,30)/t16-/m0/s1
|
Chemical Name |
2-[(4S)-3-oxo-8-[3-(pyridin-2-ylamino)propoxy]-2-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-2-benzazepin-4-yl]acetic acid
|
Synonyms |
SB-267268 SB 267268 SB267268.
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2151 mL | 11.0757 mL | 22.1513 mL | |
5 mM | 0.4430 mL | 2.2151 mL | 4.4303 mL | |
10 mM | 0.2215 mL | 1.1076 mL | 2.2151 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.