Size | Price | |
---|---|---|
Other Sizes |
Ristocetin is a naturally occuring antibiotic isolated from Amycolatopsis lurida. It was previously used to treat staphylococcal infections but no longer in clinical use due to toxicity (thrombocytopenia and platelet agglutination).
Targets |
Glycopeptide antibiotic
|
---|---|
ln Vitro |
Ristocetin will induce the agglutination of platelets in the presence of von Willebrand factor. In previous studies, an electrostatic mechanism was proposed for this phenomenon wherein first the platelet's surface charge is reduced by the binding of ristocetin and then the von Willebrand factor acts as a bridge between platelets. To test this hypothesis, the effects of ristocetin and von Willebrand factor, singly and together, on the electrophoretic mobility of normal, trypsinized, and Bernard-Soulier platelets was measured. Ristocetin alone, at concentrations of 0.5 mg/ml or more, produced a statistically significant reduction in the electrophoretic mobility of fresh or fixed platelets. Control experiments showed that the reduction was not due to changes in the ionic milieu of the solution. Therefore, the decrease in platelet mobility is evidence for binding of ristocetin to the platelet surface. Bernard-Soulier and trypsinized platelets also had reductions in mobility with ristocetin, suggesting that ristocetin binds to the platelet at sites other than the binding site for von Willebrand factor. The presence of plasma from a patient with von Willebrand's disease did not alter the reduction in mobility of normal platelets by ristocetin. However, the reduction was markedly enhanced in the presence of normal plasma. This enhancement did not occur with Bernard-Soulier platelets and was inhibited by anti-Factor VIII/von Willebrand factor antiserum or trypsinization of the platelets. Thus, the enhanced reduction appears to be associated with the binding of von Willebrand factor to the platelet surface. These studies indicate that platelets undergo two changes with ristocetin and von Willebrand factor, both of which facilitate agglutination: reduction in net surface charge and binding of von Willebrand factor, a large molecule which can serve as a bridge between platelets. In parallel studies, bovine von Willebrand factor, without ristocetin, agglutinated and reduced the electrophoretic mobility of normal but not Bernard-Soulier or trypsinized platelets; this indicates a similar mechanism of agglutination [1].
|
Toxicity/Toxicokinetics |
mouse LD50 intravenous >500 mg/kg Antibiotics Annual., 4(687), 1956/1957
|
References | |
Additional Infomation |
Ristocetin is a heterodetic cyclic peptide that is produced by species of Amycolatopsis and Nocardia. It has a role as an antibacterial drug, a platelet-activating factor receptor agonist, a bacterial metabolite and an antimicrobial agent. It is a tetrasaccharide derivative, a macrocycle, a heterodetic cyclic peptide and a glycopeptide.
Ristocetin has been reported in Nocardia with data available. An antibiotic mixture of two components, A and B, obtained from Nocardia lurida (or the same substance produced by any other means). It is no longer used clinically because of its toxicity. It causes platelet agglutination and blood coagulation and is used to assay those functions in vitro. |
Molecular Formula |
C95H110N8O44
|
---|---|
Molecular Weight |
2067.93
|
Exact Mass |
2066.66
|
Elemental Analysis |
C, 55.18; H, 5.36; N, 5.42; O, 34.04
|
CAS # |
1404-55-3
|
Related CAS # |
Ristomycin sulfate;11140-99-1
|
PubChem CID |
16204749
|
Appearance |
White to off-white solid powder
|
Index of Refraction |
1.783
|
LogP |
-6.5
|
Hydrogen Bond Donor Count |
29
|
Hydrogen Bond Acceptor Count |
46
|
Rotatable Bond Count |
17
|
Heavy Atom Count |
147
|
Complexity |
4410
|
Defined Atom Stereocenter Count |
36
|
SMILES |
C[C@H]1[C@@H]([C@@H](C[C@H](O1)O[C@H]2[C@H]3C(=O)N[C@@H](C4=C(C(=CC(=C4)O)O[C@H]5[C@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)C6=C(C=CC(=C6)[C@H](C(=O)N3)NC(=O)[C@H]7C8=CC(=C(C(=C8)OC9=CC=C2C=C9)O[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)COC1[C@@H]([C@@H]([C@H]([C@@H](O1)C)O)O)O)O)O)O[C@H]1[C@@H]([C@@H]([C@H]([C@@H](O1)CO)O)O)O[C@H]1[C@H]([C@@H]([C@@H](CO1)O)O)O)OC1=CC=C(C=C1)[C@H]([C@@H]1C(=O)N[C@@H](C2=CC(=C(C(=C2)OC2=C(C=CC(=C2)[C@H](C(=O)N1)N)O)C)O)C(=O)N7)O)O)C(=O)OC)N)O
|
InChi Key |
VUOPFFVAZTUEGW-FBMDODLCSA-N
|
InChi Code |
InChI=1S/C95H110N8O44/c1-30-47(109)18-37-20-49(30)139-50-19-35(9-16-46(50)108)59(97)84(125)102-64-68(113)33-5-11-40(12-6-33)137-52-21-38-22-53(81(52)145-95-83(76(121)72(117)56(143-95)29-134-91-78(123)73(118)67(112)32(3)136-91)147-94-82(75(120)71(116)55(27-105)142-94)146-92-77(122)69(114)48(110)28-133-92)138-41-13-7-34(8-14-41)80(144-57-25-44(96)66(111)31(2)135-57)65-89(130)101-63(90(131)132-4)43-23-39(106)24-51(140-93-79(124)74(119)70(115)54(26-104)141-93)58(43)42-17-36(10-15-45(42)107)60(85(126)103-65)98-87(128)62(38)99-86(127)61(37)100-88(64)129/h5-24,31-32,44,48,54-57,59-80,82-83,91-95,104-124H,25-29,96-97H2,1-4H3,(H,98,128)(H,99,127)(H,100,129)(H,101,130)(H,102,125)(H,103,126)/t31-,32-,44+,48+,54+,55-,56+,57+,59+,60+,61-,62+,63-,64+,65-,66-,67-,68+,69+,70+,71-,72+,73+,74-,75+,76-,77-,78+,79-,80+,82+,83+,91?,92-,93+,94-,95-/m0/s1
|
Chemical Name |
methyl (1S,2R,18R,19R,22R,34S,37R,40R,52S)-22-amino-2-[(2S,4R,5R,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-64-[(2S,3R,4S,5S,6R)-3-[(2S,3R,4R,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3S,4R,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxy-6-[[(3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-18,26,31,44,49-pentahydroxy-30-methyl-21,35,38,54,56,59-hexaoxo-47-[(2S,3S,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7,13,28-trioxa-20,36,39,53,55,58-hexazaundecacyclo[38.14.2.23,6.214,17.219,34.18,12.123,27.129,33.141,45.010,37.046,51]hexahexaconta-3(66),4,6(65),8,10,12(64),14(63),15,17(62),23(61),24,26,29(60),30,32,41(57),42,44,46(51),47,49-henicosaene-52-carboxylate
|
Synonyms |
Spontin; Ristocetina; RISTOCETIN; Spontin; UNII-ZP3E6S00IL; Ristocetina [INN-Spanish]; ZP3E6S00IL; Ristomycin; ...; 1404-55-3; Ristocetin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~100 mg/mL
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.4836 mL | 2.4179 mL | 4.8358 mL | |
5 mM | 0.0967 mL | 0.4836 mL | 0.9672 mL | |
10 mM | 0.0484 mL | 0.2418 mL | 0.4836 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.