yingweiwo

(Rac)-SEP-363856

Alias: (Rac)SEP363856; (Rac) SEP 363856; (Rac)-SEP-363856; 1310426-29-9; CHEMBL5094122; SCHEMBL12644523; 4,7-dihydro-N-methyl-5H-Thieno[2,3-c]pyran-7-methanamine; BDBM50581606;
Cat No.:V38969 Purity: ≥98%
(Rac)-SEP-363856, a racemic misture ofSEP-363856, isa novel and potent psychotropic agent acting as atrace amine-associated receptor 1 (TAAR1) agonist with serotonin 1A (5-HT1A) agonist activity.
(Rac)-SEP-363856
(Rac)-SEP-363856 Chemical Structure CAS No.: 1310426-29-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of (Rac)-SEP-363856:

  • SEP-363856 HCl (Ulotaront)
  • SEP-363856 S-isomer
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

(Rac)-SEP-363856, a racemic misture of SEP-363856, is a novel and potent psychotropic agent acting as a trace amine-associated receptor 1 (TAAR1) agonist with serotonin 1A (5-HT1A) agonist activity. Also a CNS active psychotropic agent with a Unique, Non-D 2 Receptor Mechanism of Action. It has the potential to be used for the treatment of acute schizophrenia that does not bind to the dopamine-2 (D2) receptor but binds to trace amine-associated (TAAR) receptors and 5-HT1A receptors. May also be used for other neuropsychiatric disorders.

Biological Activity I Assay Protocols (From Reference)
Targets
TAAR1; 5-HT1A Receptor
ln Vitro
SEP-856 (10 μM) exhibits >50% inhibition of specific binding at α2A, α2B, D2, 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors[1].
ln Vivo
SEP-856 (0.3, 1 and 10 mg/kg, i.p.) has a behavioral signature resembling that of well-known antipsychotic medications and is CNS active[1]. SEP-856 (0.3, 1 and 10 mg/kg, orally once) substantially lowers hyperactivity brought on by PCP[1]. When SEP-856 is taken orally at doses of 1, 3, and 10 mg/kg, there is a dose-dependent reduction in REM sleep, an increase in REM sleep latency, and an increase in cumulative wake time [1].
Enzyme Assay
In Vitro and In Vivo 5-HT1A and D2 Receptor Occupancy Studies.[1] In vitro autoradiography was used to determine the effects of SEP-856 on [3H]-8-OH-DPAT binding to 5-HT1A receptors in rat brain sections. In vivo occupancy of SEP-856 at D2 receptors was measured with [3H]-raclopride in Sprague-Dawley rats and with [18F]-fallypride–positron emission tomography in nonhuman primates. For details, refer to Supplemental Material.[1]
Cell Assay
Patch–Clamp Recordings in the Dorsal Raphe Nucleus and Ventral Tegmental Area.[1] In vitro whole–cell patch–clamp recording techniques were used in isolated slice preparations (male C57BL/6J mice, 4–16 weeks) of the dorsal raphe nucleus (DRN) and ventral tegmental area (VTA) to investigate the effects of SEP-856 on neuronal activity. The experiments examined the effects of SEP-856 (1–30 μM) on the activity of DRN and VTA neurons that were characterized by their electrophysiological properties and/or their sensitivity to application of the 5-HT1A receptor agonist 8-OH-DPAT (DPAT; 10 μM). Subsequently, effects mediated via the TAAR1 and/or via the 5-HT1A receptor were investigated using the selective antagonist N-(3-Ethoxy-phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide (EPPTB; 0.05–1 μM) and the selective antagonist WAY-100635 (WAY-635; 10 μM), respectively. All compounds were dissolved in either DMSO or ddH2O and diluted with artificial cerebrospinal fluid (aCSF) to a final concentration from a minimum 1000-fold higher stock concentration (maximum slice DMSO concentration 0.1%). Whole–cell patch–clamp recordings were performed at room temperature using the blind version of the patch–clamp technique with either Axopatch 1D or Multiclamp 700B amplifiers. For detailed methods, refer to the Supplemental Material.[1]
Animal Protocol
EEG Recordings.[1] EEG recordings were performed in seven adult male Sprague-Dawley rats using a crossover design. Animals were implanted with chronic recording devices for continuous recordings of electroencephalograph (EEG), electromyograph, core body temperature (Tb), and locomotor activity via telemetry (DQ ART 4.1 software; Data Sciences, St. Paul, MN). Following completion of the data collection, expert scorers determined states of sleep and wakefulness in 10-second epochs by examining the recordings visually using NeuroScore software (Data Sciences). All doses of SEP-856, caffeine, and vehicle were administered by oral gavage. A minimum of 3 days elapsed between doses. To evaluate the effects of SEP-856 on sleep/wake parameters during the inactive period, dosing occurred during the middle of the rats’ normal inactive period. The first 6 hours of the recording were scored and analyzed. For additional details, please refer to the Supplemental Material.[1]
References
J Pharmacol Exp Ther. 2019 Oct;371(1):1-14.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H13NOS
Molecular Weight
183.270621061325
Exact Mass
183.071
CAS #
1310426-29-9
Related CAS #
SEP-363856 hydrochloride;1310422-41-3;SEP-363856;1310426-33-5
PubChem CID
68335002
Appearance
Typically exists as solid at room temperature
LogP
0.9
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
2
Heavy Atom Count
12
Complexity
154
Defined Atom Stereocenter Count
0
InChi Key
ABDDQTDRAHXHOC-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H13NOS/c1-10-6-8-9-7(2-4-11-8)3-5-12-9/h3,5,8,10H,2,4,6H2,1H3
Chemical Name
1-(5,7-dihydro-4H-thieno[2,3-c]pyran-7-yl)-N-methylmethanamine
Synonyms
(Rac)SEP363856; (Rac) SEP 363856; (Rac)-SEP-363856; 1310426-29-9; CHEMBL5094122; SCHEMBL12644523; 4,7-dihydro-N-methyl-5H-Thieno[2,3-c]pyran-7-methanamine; BDBM50581606;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.4564 mL 27.2822 mL 54.5643 mL
5 mM 1.0913 mL 5.4564 mL 10.9129 mL
10 mM 0.5456 mL 2.7282 mL 5.4564 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us