yingweiwo

(R)-SLV 319 (Ibipinabant)

Alias: (R)-SLV 319; (R)-SLV-319; S-Ibipinabant; Ibipinabant S-isomer
Cat No.:V47461 Purity: ≥98%
(R)-SLV 319 is a potent and specific cannabinoid receptor 1 (CB1) antagonist (inhibitor) with Ki of 894 nM.
(R)-SLV 319 (Ibipinabant)
(R)-SLV 319 (Ibipinabant) Chemical Structure CAS No.: 656827-86-0
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
Other Sizes

Other Forms of (R)-SLV 319 (Ibipinabant):

  • Ibipinabant (SLV319; BMS-646256) S-isomer
  • Ibipinabant racemate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(R)-SLV 319 is a potent and specific cannabinoid receptor 1 (CB1) antagonist (inhibitor) with Ki of 894 nM. (R)-SLV 319 is the right-handed enantiomer of SLV 319.
Biological Activity I Assay Protocols (From Reference)
Targets
cannabinoid receptor 1 (CB1)
ln Vitro
A series of novel 3,4-diarylpyrazolines was synthesized and evaluated in cannabinoid (hCB(1) and hCB(2)) receptor assays. The 3,4-diarylpyrazolines elicited potent in vitro CB(1) antagonistic activities and in general exhibited high CB(1) vs CB(2) receptor subtype selectivities. [1]
Analogs of SLV-319 (Ibipinibant), a CB1 receptor inverse agonist, were synthesized with functionality intended to limit brain exposure while maintaining the receptor affinity and selectivity of the parent compound. Structure activity relationships of this series, and pharmacology of two lead compounds, 16 (JD-5006) and 23 (JD-5037) showing little brain presence as indicated by tissue distribution and receptor occupancy studies, are described. Effects with one of these compounds on plasma triglyceride levels, liver weight and enzymes, glucose tolerance and insulin sensitivity support the approach that blockade of peripheral CB(1) receptors is sufficient to produce many of the beneficial metabolic effects of globally active CB(1) blockers. Thus, PR CB(1) inverse agonists may indeed represent a safer alternative to highly brain-penetrant agents for the treatment of metabolic disorders, including diabetes, liver diseases, dyslipidemias, and obesity.[Bioorg Med Chem Lett. 2012 Oct 1;22(19):6173-80.]
ln Vivo
Some key representatives showed potent pharmacological in vivo activities after oral dosing in both a CB agonist-induced blood pressure model and a CB agonist-induced hypothermia model. Chiral separation of racemic 67, followed by crystallization and an X-ray diffraction study, elucidated the absolute configuration of the eutomer 80 (SLV319) at its C(4) position as 4S. Bioanalytical studies revealed a high CNS-plasma ratio for the development candidate 80. Molecular modeling studies showed a relatively close three-dimensional structural overlap between 80 and the known CB(1) receptor antagonist rimonabant (SR141716A). Further analysis of the X-ray diffraction data of 80 revealed the presence of an intramolecular hydrogen bond that was confirmed by computational methods. Computational models and X-ray diffraction data indicated a different intramolecular hydrogen bonding pattern in the in vivo inactive compound 6. In addition, X-ray diffraction studies of 6 revealed a tighter intermolecular packing than 80, which also may contribute to its poorer absorption in vivo. Replacement of the amidine -NH(2) moiety with a -NHCH(3) group proved to be the key change for gaining oral biovailability in this series of compounds leading to the identification of 80 [1].
Enzyme Assay
Receptor Binding Assays.[2]
1. CB1 Assay. CB1 receptor affinities were determined using membrane preparations of Chinese hamster ovary (CHO) cells in which the human cannabinoid CB1 receptor is stably transfected in conjunction with [3H]CP-55,940 as radioligand. After incubation of a freshly prepared cell membrane preparation with the [3H]-radioligand, with or without addition of test compound, separation of bound and free ligand was performed by filtration over glassfiber filters. Radioactivity on the filter was measured by liquid scintillation counting. The IC50 values from at least three independent measurements were combined and converted to Ki values using the assumptions of Cheng and Prusoff. [2]
2. CB2 Assay. [2]
CB2 receptor affinities were determined using membrane preparations of Chinese hamster ovary (CHO) cells in which the human cannabinoid CB2 receptor is stably transfected20 in conjunction with [3H]CP-55,940 as radioligand. After incubation of a freshly prepared cell membrane preparation with the [3H]-radioligand, with or without addition of test compound, separation of bound and free ligand was performed by filtration over glassfiber filters. Radioactivity on the filter was measured by liquid scintillation counting. The IC50 values from at least two independent measurements were combined and converted to Ki values using the assumptions of Cheng and Prusoff.[2]
Cell Assay
In Vitro Pharmacology. Measurement of Arachidonic Acid Release. CB1 receptor antagonism21 was assessed with the human CB1 receptor cloned in Chinese hamster ovary (CHO) cells. CHO cells were grown in a Dulbecco's modified Eagle's medium (DMEM) culture medium, supplemented with 10% heat-inactivated fetal calf serum. Medium was aspirated and replaced by DMEM, without fetal calf serum, but containing [3H]-arachidonic acid and incubated overnight in a cell culture stove (5% CO2/95% air; 37 °C; water-saturated atmosphere). During this period [3H]-arachidonic acid was incorporated in membrane phospholipids. On the test day, medium was aspirated and cells were washed three times using 0.5 mL of DMEM, containing 0.2% bovine serum albumin (BSA). Stimulation of the CB1 receptor by WIN 55,212-2 led to activation of PLA2 followed by release21 of [3H]-arachidonic acid into the medium. This WIN 55,212-2-induced release was concentration dependently antagonized by CB1 receptor antagonists. The CB1 antagonistic potencies of the test compounds were expressed as pA2 values[2].
References

[1]. Synthesis, biological properties, and molecular modeling investigations of novel 3,4-diarylpyrazolines as potent and selective CB(1) cannabinoid receptor antagonists. J Med Chem. 2004;47(3):627-643.

Additional Infomation
The lead optimization of the CB1 cannabinoid receptor antagonist 5 has led to the development candidates 78 (SLV326) and 80. Both 78 and 80 are novel subtype selective CB1 receptor antagonists exhibiting potent pharmacological activity in vitro as well as in vivo after oral administration. It has been demonstrated that the interactions of the enantiomers 78−81 with the CB1 receptor are highly stereoselective. Mono- and dimethylation of the polar carboxamidine moiety in 6 resulted in the compounds 80 and 25 having substantially lower calculated PSA values. These methylations are pivotal in governing the oral bioavailability in the pyrazoline series, conceivably by subtly affecting the degree of dissolution rate in the gastrointestinal tract, as the result of a different intramolecular hydrogen bonding pattern and crystal packing.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H20N4O2SCL2
Molecular Weight
487.4015
Exact Mass
486.068
Elemental Analysis
C, 56.68; H, 4.14; Cl, 14.55; N, 11.50; O, 6.57; S, 6.58
CAS #
656827-86-0
Related CAS #
464213-10-3 (S-isomer); 656827-86-0 (R-isomer); 362519-49-1 (racemate)
PubChem CID
11363773
Appearance
Typically exists as solid at room temperature
Density
1.4±0.1 g/cm3
Boiling Point
623.2±65.0 °C at 760 mmHg
Flash Point
330.7±34.3 °C
Vapour Pressure
0.0±1.8 mmHg at 25°C
Index of Refraction
1.663
LogP
4.67
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
6
Heavy Atom Count
32
Complexity
791
Defined Atom Stereocenter Count
1
SMILES
CN=C(NS(=O)(=O)C1=CC=C(C=C1)Cl)N2C[C@@H](C3=CC=CC=C3)C(=N2)C4=CC=C(C=C4)Cl
InChi Key
AXJQVVLKUYCICH-NRFANRHFSA-N
InChi Code
InChI=1S/C23H20Cl2N4O2S/c1-26-23(28-32(30,31)20-13-11-19(25)12-14-20)29-15-21(16-5-3-2-4-6-16)22(27-29)17-7-9-18(24)10-8-17/h2-14,21H,15H2,1H3,(H,26,28)/t21-/m0/s1
Chemical Name
(4R)-5-(4-chlorophenyl)-N-(4-chlorophenyl)sulfonyl-N'-methyl-4-phenyl-3,4-dihydropyrazole-2-carboximidamide
Synonyms
(R)-SLV 319; (R)-SLV-319; S-Ibipinabant; Ibipinabant S-isomer
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0517 mL 10.2585 mL 20.5170 mL
5 mM 0.4103 mL 2.0517 mL 4.1034 mL
10 mM 0.2052 mL 1.0259 mL 2.0517 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT00541567 Completed Drug: ibipinabant Obesity and Type 2 Diabetes Solvay Pharmaceuticals March 2008 Phase 2
Phase 3
Contact Us