yingweiwo

CGS 21680 sodium

Alias: CGS-21680 Sodium salt; 120225-64-1; CGS 21680C Sodium Salt; CGS 21680 sodium; CGS 21680 (sodium); SCHEMBL8104728;
CGS 21680 (sodium), the sodium salt of CGS 21680, is a potent and specific agonist of adenosine A2 receptors with potential antideppressant activity.
CGS 21680 sodium
CGS 21680 sodium Chemical Structure CAS No.: 120225-64-1
Product category: Biochemical Assay Reagents
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
CGS 21680 (sodium), the sodium salt of CGS 21680, is a potent and specific agonist of adenosine A2 receptors with potential antideppressant activity. It has 140-fold selectivity over A1 receptors and an IC50 of 22 nM for adenosine A2 receptor activation.
Biological Activity I Assay Protocols (From Reference)
Targets
Adenosine A2A receptor ( Ki = 27 nM )
ln Vitro

In vitro activity: CGS 21680 HCl is an agonist of the adenosine A2 receptor that has an IC50 of 22 nM and 140-fold potency over the A1 receptor. With an ED25 value of 1.8 nM, CGS 21680C effectively increases coronary flow in an isolated perfused working rat heart model.[1] CGS 21680 binds to one set of recognition sites on the adenosine A2 receptor with a high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein).[2] CGS 21680 is not effective in stimulating the formation of cAMP, a putative A2 mediated response, and is a weak agonist on pre- and postsynaptic measures of electrophysiologic activity (putative Al receptor mediated events) in hippocampal slices. CGS 21680 is not able to inhibit electrically stimulated dopamine release in striatal slices, but it can potently stimulate the formation of cAMP with an EC50 of 110 nM. [3] CGS 21680C is the sodium salt of CGS 21680, and CGS 21680A is the hydrochloride salt.

ln Vivo
CGS 21680A is effective for up to 24 hours when given orally at a dose of 10 mg/kg in spontaneously hypertensive rats. CGS 21680A caused a brief (60 min) rise in heart rate.[1] CGS 21680 is a strong inhibitor of rat cerebral cortical neurons' spontaneous, acetylcholine- and glutamate-evoked firing.[4]
Enzyme Assay
CGS 21680C (2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethyl-carboxamido adenosine) a 2-substituted analog of the riboside uronamide, 5'-N-ethylcarboxamido adenosine and the related analog CGS 21577 (2-phenethylamino-5'-N-ethylcarboxamido adenosine), have high in vitro affinity for brain striatal adenosine A2 receptors (IC50 values = 22 and 13 nM, respectively). Both compounds were considerably less active at A1 receptors with CGS 21577 and CGS 21680C having respective IC50 values of 0.76 and 3.1 microM. The former compound was thus 59-fold selective for A2 receptors whereas CGS 21680C was 140-fold selective. In contrast, the reference A2 selective ligand, CV 1808 (2-phenylaminoadenosine), showed only 8-fold selectivity as an A2 ligand, having an IC50 of 115 nM in the [3H]-5'N-ethylcarboxamide adenosine assay and an IC50 of 910 nM at the N6-[3H] cyclohexyladenosine site. Further examination of CGS 21680C showed that the compound was without effect on binding to 17 other putative neurotransmitter/neuromodulator sites indicating its selectivity as an adenosine receptor ligand. In an isolated perfused working rat heart model, CGS 21680C effectively increased coronary flow with an ED25 value of 1.8 nM. The corresponding value for CGS 21577 was 3 nM whereas that for CV 1808 was 110 nM. The EC25 for eliciting bradycardia for all three compounds was greater than 1000 nM. The effects of all three compounds could be reversed by treatment with the xanthine adenosine antagonist, xanthine amine congener[1].
Cell Assay
Each group's 10×106 MNCs are re-suspended in 2 mL of RPMI 1640. Carboxy-fluorescein diacetate, succinimidyl ester (CFSE, final concentration 2.5 μM) is added to cell suspensions and well mixed. The staining process is quenched by adding 10 mL of ice-cold complete RPMI 1640 (containing 10% FBS) and incubating on ice for 5 minutes after being incubated in the dark for 15 minutes at 37°C. The cells are then given two RPMI 1640 washes. Re-suspended cell pellets are in full RPMI 1640, which contains 10% FBS. In 24-well culture plates, the stained MNCs (1×106 cells/mL, 1 mL/well) are cultured in triplicate under 37°C dark conditions. 50 μL of either P0 peptide (final concentration 10 μg/mL) or Concanavalin A (ConA, final concentration 5 μg/mL) are added to each well. After 72 hours, cells are gathered and stained for 30 minutes at 4°C using an anti-rat CD4 antibody labeled with PE. Ultimately, a flow cytometer is used to examine the cells.
Animal Protocol
In the nearby animal facility, female Lewis rats, weighing between 140 and 160 grams at birth, are kept in housing designed to prevent pathogens and provide them with unrestricted access to food and water. Day 5 p.i. is when CGS21680 administration begins (at a dose of 1 mg/kg in PBS). Until the end of the trials, rats in the experimental group receive intraperitoneal (i.p.) injections of CGS21680 every two days. The control group of rats receives the same volume of PBS in the same manner. It is decided on the dosages (1 mg/kg/i.p.) and the treatment plan (every two days, beginning on day 5 p.i.).
Characterization of the adenosine A2 receptor has been limited due to the lack of available ligands which have high affinity and selectivity for this adenosine receptor subtype. In the present study, the binding of a highly A2-selective agonist radioligand, [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) is described. [3H]CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that [3H]CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. [3H]CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM [3H]CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of [3H]CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = (1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine. The pharmacological profile of both adenosine agonist and antagonist compounds to compete for the binding of [3H]CGS 21680 was consistent with a selective interaction at the high affinity adenosine A2 receptor. A high positive correlation (r = 0.98, P less than .01) was observed between the pharmacological profile of adenosine ligands to inhibit the binding of [3H]CGS 21680 and the selective binding of [3H]NECA (+50 nM CPA) to high affinity A2 receptors. However, some differences between these assays were found for compounds which have moderate affinity and nonselective actions at both the A1 and A2 adenosine receptor subtypes. Unlike data obtained with nonselective adenosine ligands, the present results indicate that [3H]CGS 21680 directly labels the high affinity A2 receptor in rat brain without the need to block binding activity at the A1 receptor.[2]
References

[1]. J Pharmacol Exp Ther. 1989 Oct;251(1):47-55.

[2]. J Pharmacol Exp Ther. 1989 Dec;251(3):888-93.

[3]. J Pharmacol Exp Ther. 1990 Mar;252(3):1134-41.

[4]. Brain Res. 1990 Feb 19;509(2):328-30.

Additional Infomation
Evaluation of adenosine A2 receptor function in the mammalian CNS has been impeded by the lack of highly selective A2 receptor agonists. The present investigations describe the actions of a recently introduced A2 selective adenosine agonist, CGS 21680 (2-[p-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosi ne), on various functional neural responses known to be affected by adenosine. In hippocampal slices, CGS 21680 appeared to be a weak agonist on pre- and postsynaptic measures of electrophysiological activity (putative A1 receptor mediated events) and was ineffective at stimulating the formation of cAMP (a putative A2b mediated response). 5'-N-ethycarboxamidoadenosine (NECA), which is known to act at both A2a and A2b receptors, increased hippocampal cAMP levels 4-fold. In striatal slices, CGS 21680 potently stimulated the formation of cAMP with an EC50 of 110 nM but was ineffective at inhibiting electrically stimulated dopamine release. In contrast, adenosine and cyclohexyladenosine both inhibited the stimulus-evoked overflow of dopamine. These results agree with previous receptor binding studies suggesting that CGS 21680 is a relatively selective agonist at the high affinity adenosine A2a receptor in striatum, with little intrinsic activity at the low affinity A2b site in hippocampus.[3]
The A2 selective adenosine receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) depressed the spontaneous, acetylcholine- and glutamate-evoked firing of rat cerebral sensorimotor cortical neurons. Iontophoretically applied CGS 21680 was equipotent with adenosine as a depressant and its actions were antagonized by 8-p-sulphophenyltheophylline applied from another barrel of the multibarrelled micropipette. The observation of a potent depressant action of a selective A2 receptor agonist suggests that A2 receptors are involved in the modulation of cerebral cortical neuronal firing by adenosine.[4]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H28N7NAO6
Molecular Weight
521.50
CAS #
120225-64-1
Appearance
Typically exists as solids at room temperature
SMILES
[Na+].O=C(CCC1C=CC(CCNC2N=C(N)C3=C(N([C@@H]4O[C@H](C(NCC)=O)[C@@H](O)[C@H]4O)C=N3)N=2)=CC=1)[O-]
Synonyms
CGS-21680 Sodium salt; 120225-64-1; CGS 21680C Sodium Salt; CGS 21680 sodium; CGS 21680 (sodium); SCHEMBL8104728;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9175 mL 9.5877 mL 19.1755 mL
5 mM 0.3835 mL 1.9175 mL 3.8351 mL
10 mM 0.1918 mL 0.9588 mL 1.9175 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us