yingweiwo

Fluorescein O,O′-diacrylate

Alias: Diacryloyloxyfluorescein; Diacryloyloxyfluorescein; 7262-39-7; FLUORESCEIN O O'-DIACRYLATE 98; 3-Oxo-3h-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl diacrylate; (3-oxo-6'-prop-2-enoyloxyspiro[2-benzofuran-1,9'-xanthene]-3'-yl) prop-2-enoate; Fluorescein O,O'-dimethacrylate; Fluorescein O,O'-diacrylate; Fluorescein O,O inverted exclamation marka-diacrylate;
Cat No.:V93348 Purity: ≥98%
Fluorescein O,O′-diacrylate (Diacryloyloxyfluorescein) is a fluorescent compound with good biocompatibility and cell labeling ability.
Fluorescein O,O′-diacrylate
Fluorescein O,O′-diacrylate Chemical Structure CAS No.: 7262-39-7
Product category: Fluorescent Dye
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Fluorescein O,O′-diacrylate (Diacryloyloxyfluorescein) is a fluorescent compound with good biocompatibility and cell labeling ability. Fluorescein O,O′-diacrylate is often used in biological imaging and cell tracking research, and can effectively label cells and track their dynamic changes in vivo. Fluorescein O,O′-diacrylate is also used in compound delivery systems to improve the localization accuracy and inhibitory effect of compounds. Fluorescein O,O′-diacrylate is also used to prepare polymer materials to enhance their optical properties and biological interactions.
Biological Activity I Assay Protocols (From Reference)
Targets
Fluorescent dye
ln Vitro
Glutamate may be released from microglia by mechanisms other than SxC−. To confirm that SxC− was the transporter inhibited by the novel DBT analogs, cystine uptake was measured for two of the test substances. Primary microglia were treated for 15 h, and then 35DBTA7 and 35DBTSA12 were applied during uptake of selenocystine, which can be detected after conjugation with fluorescein O,O'-diacrylate (Fig. 5). A dose-dependent inhibition of cystine uptake into microglia was observed for both compounds at IC50 values roughly similar to those for glutamate release [1].
Another study developed fluorescent cationic and anionic nanogels linked with fluorescein O,O'-diacrylate for the visualization of cellular fluorescence and then loaded with dual therapeutic agents cisplatin and 5-fluorouracil for lung cancer (NCI-H1437) and colorectal cancer (HCT-116) pharmacotherapy and image processing functionality of the nanogel in response to pH. Both cationic and anionic nanogels had a higher fluorescence intensity in basic conditions and a substantially lower fluorescence intensity in acidic conditions [2].
Enzyme Assay
Cystine uptake assay [1]
Cystine uptake was measured essentially as per Shimomura et al. using the Cystine Uptake Assay Kit (DOJINDO). Primary microglia were seeded as per glutamate release assays, and some cultures were treated the following day with 100 ng/ml LPS. After 15 h, the cultures were washed twice with Hank’s balanced salt solution (HBSS) and then incubated 5 min at 37 °C in HBSS containing fresh LPS and test substances at the indicated concentrations. The cultures were then exposed to HBSS containing selenocystine for 30 min at 37 °C, after which they were washed three times with ice-cold phosphate-buffered saline and then fixed in 50 μl methanol. A detection buffer comprising fluorescein O,O'-diacrylate and reducing agent was then added, and the plate was sealed and incubated for 30 min at 37 °C. Reaction product was then assayed in the Molecular Devices SpectraMax 3 with excitation at 490 nm and emission at 535 nm. Blanks consisted of wells containing only cells that had been washed, fixed with methanol, and incubated with the detection buffer, and the values from these wells were subtracted from the experimental values.
References
[1]. Design, synthesis, and characterization of novel system xC− transport inhibitors: inhibition of microglial glutamate release and neurotoxicity. J Neuroinflammation. 2023 Dec 6;20:292.
[2]. Advanced cisplatin nanoformulations as targeted drug delivery platforms for lung carcinoma treatment: a review. Journal of Materials Science. 2022,57, 16192–16227.
Additional Infomation
Neuroinflammation appears to involve some degree of excitotoxicity promulgated by microglia, which release glutamate via the system xC− (SxC−) cystine-glutamate antiporter. With the aim of mitigating this source of neuronal stress and toxicity, we have developed a panel of inhibitors of the SxC− antiporter. The compounds were based on l-tyrosine, as elements of its structure align with those of glutamate, a primary physiological substrate of the SxC− antiporter. In addition to 3,5-dibromotyrosine, ten compounds were synthesized via amidation of that parent molecule with a selection of acyl halides. These agents were tested for the ability to inhibit release of glutamate from microglia activated with lipopolysaccharide (LPS), an activity exhibited by eight of the compounds. To confirm that the compounds were inhibitors of SxC−, two of them were further tested for the ability to inhibit cystine uptake. Finally, these agents were shown to protect primary cortical neurons from the toxicity exhibited by activated microglia. These agents may hold promise in reducing the neurodegenerative effects of neuroinflammation in conditions, such as encephalitis, traumatic brain injury, stroke, or neurodegenerative diseases.[1]
Lung cancer accounts for the second-highest death rate globally among cancer-associated mortality. Cisplatin is a first-line chemotherapy medication used for the treatment of lung cancer. The most challenging problems in treating lung cancer with this drug include the development of drug resistance by the cells, low water solubility, and adverse effects on the normal cells. To address these concerns, nanotechnology-based drug delivery approach has shown promising results, resulting in an increase in the cellular absorption of drugs by the cancer cells with minimal adverse effects. According to the findings, cisplatin formulations including polymeric nanoparticles, micelles, dendrimers, and liposomes have a greater chance of delivering persistent cisplatin to the tumor in response to changes in the tumor microenvironment. This review deals with the various in vitro and in vivo studies of cisplatin nanoformulations and also covers the clinical trials carried out using nanocarrier-based cisplatin delivery. According to the best of our knowledge, this is the first detailed review article containing collective studies of cisplatin nanoformulations for lung cancer treatment. [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H16O7
Molecular Weight
440.40
Exact Mass
440.089602
CAS #
7262-39-7
PubChem CID
4589514
Appearance
Typically exists as solids at room temperature
LogP
4.8
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
6
Heavy Atom Count
33
Complexity
788
Defined Atom Stereocenter Count
0
SMILES
C=CC(=O)OC1=CC2=C(C=C1)C3(C4=C(O2)C=C(C=C4)OC(=O)C=C)C5=CC=CC=C5C(=O)O3
InChi Key
GTQZGVDHWVBMOJ-UHFFFAOYSA-N
InChi Code
InChI=1S/C26H16O7/c1-3-23(27)30-15-9-11-19-21(13-15)32-22-14-16(31-24(28)4-2)10-12-20(22)26(19)18-8-6-5-7-17(18)25(29)33-26/h3-14H,1-2H2
Chemical Name
(3-oxo-6'-prop-2-enoyloxyspiro[2-benzofuran-1,9'-xanthene]-3'-yl) prop-2-enoate
Synonyms
Diacryloyloxyfluorescein; Diacryloyloxyfluorescein; 7262-39-7; FLUORESCEIN O O'-DIACRYLATE 98; 3-Oxo-3h-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl diacrylate; (3-oxo-6'-prop-2-enoyloxyspiro[2-benzofuran-1,9'-xanthene]-3'-yl) prop-2-enoate; Fluorescein O,O'-dimethacrylate; Fluorescein O,O'-diacrylate; Fluorescein O,O inverted exclamation marka-diacrylate;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2707 mL 11.3533 mL 22.7066 mL
5 mM 0.4541 mL 2.2707 mL 4.5413 mL
10 mM 0.2271 mL 1.1353 mL 2.2707 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us