yingweiwo

Tepotinib hydrochloride

Alias: EMD-1214063 hydrochloride; 8B73AZL5XP; 1103508-80-0; Tepotinib hydrochloride anhydrous; UNII-8B73AZL5XP; Benzonitrile, 3-(1,6-dihydro-1-((3-(5-((1-methyl-4-piperidinyl)methoxy)-2-pyrimidinyl)phenyl)methyl)-6-oxo-3-pyridazinyl)-, hydrochloride (1:1); SCHEMBL1295616; YHHHGHDGBUUWIS-UHFFFAOYSA-N; 3-(1-{3-[5-(1-methyl-piperidin-4-ylmethoxy)-pyrimidin-2-yl]-benzyl}-6-oxo-1,6-dihydro-pyridazin-3-yl)-benzonitrile hydrochloride;
Cat No.:V88009 Purity: ≥98%
Tepotinib (EMD-1214063) hydrochloride is an orally active, highly selective, reversible, ATP-competitive c-Met inhibitor with an IC50 of 3 nM.
Tepotinib hydrochloride
Tepotinib hydrochloride Chemical Structure CAS No.: 1103508-80-0
Product category: Autophagy
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
50mg
100mg
500mg
1g
Other Sizes

Other Forms of Tepotinib hydrochloride:

  • Tepotinib (EMD 1214063; MSC 2156119)
  • Tepotinib Hydrochloride Hydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Tepotinib (EMD-1214063) hydrochloride is an orally active, highly selective, reversible, ATP-competitive c-Met inhibitor with an IC50 of 3 nM. It is more than 200-fold more selective for c-Met than IRAK4, TrkA, Axl, IRAK1, and Mer. Tepotinib hydrochloride inhibits c-Met phosphorylation and induces autophagy. Tepotinib hydrochloride has anti-tumor effects.
Biological Activity I Assay Protocols (From Reference)
Targets
c-Met (IC50 = 4 nM)
ln Vitro
Tepotinib hydrochloride inhibits IRAK4, TrkA, Axl, IRAK1, Mer and TrkA with IC50 of 615, 1017, 1566, 2037, 2272 and 5716 nM, respectively[1]. Tepotinib hydrochloride inhibits HGF-induced c-Met phosphorylation in A549 cells with an average IC50 of 6 nM[1]. Tepotinib (0.01 nM-30 μM) hydrochloride can inhibit tumor cell proliferation and migration in vitro[1].
ln Vivo
Tepotinib hydrochloride induces tumor regression in xenograft models and inhibits c-Met phosphorylation in vivo [1].
Enzyme Assay
EMD 1214063 and EMD 1204831 selectively suppressed the c-Met receptor tyrosine kinase activity. Their inhibitory activity was potent [inhibitory 50% concentration (IC50), 3 nmol/L and 9 nmol/L, respectively] and highly selective, when compared with their effect on a panel of 242 human kinases. Both EMD 1214063 and EMD 1204831 inhibited c-Met phosphorylation and downstream signaling in a dose-dependent fashion, but differed in the duration of their inhibitory activity[1].
c-Met in vitro kinase assay[1]
Kinase inhibition by EMD 1214063 or EMD 1204831 (1 and 10 μmol/L) was assessed in vitro using a panel of 242 different kinases. Biochemical activity was measured in a flash-plate assay. His6-tagged recombinant human c-Met kinase domain (Aa 974–end; 20 ng) and biotinylated poly-Ala-Glu-Lys-Tyr (6:2:5:1; 500 ng) were incubated with or without the test compound for 90 minutes at room temperature in 100 μL buffer containing 0.3 μCi 33P-ATP, 2.5 μg polyethylene glycol 20.000, and 1% dimethyl sulfoxide (DMSO), as previously described. Radioactivity was measured with a TopCount microplate scintillation and luminescence counter. Inhibitory 50% concentration values (IC50) were calculated by nonlinear regression analysis using the RS/1 software program. [1]
Phospho-c-Met-capture ELISA[1]
Total c-Met phosphorylation was assessed by c-Met–capture ELISA in Nunc-Immuno MicroWell 96-well solid plates. A549 human lung cancer cells were seeded 2 days before treatment, serum-starved for 20 hours, and treated on day 3 with different concentrations of EMD 1214063 or EMD 1204831 or 0.2% DMSO for 45 minutes at 37°C, 5% CO2. Upon stimulation with 100 ng/mL HGF for 5 minutes, cells were lysed with 70 μL per well ice-cold lysis buffer [20 nmol/L HEPES, pH 7,4; 10% (V/V) Glycerol; 150 nmol/L NaCl; 1% (V/V) Triton-X-100; 2 nmol/L EDTA] supplemented with protease and phosphatase inhibitors. In the wash-out experiments, A549 were treated with EMD 1214063 or EMD 1204831 for 45 minutes, washed, and incubated in serum-free medium for 14 hours, before stimulation with HGF (100 ng/mL). In the ELISA, the capture antibody was specific for the c-Met extracellular domain, whereas an antiphosphotyrosine biotin-labeled antibody was used for detection. Tyrosine phosphorylation was revealed using a streptavidin peroxidase conjugate and chemiluminescence read-out.
Biochemical analysis[1]
Phosphorylation of c-Met, Gab-1, Akt, and Erk1/2 was analyzed by Western blot analysis in EBC-1 cells. In brief, cells were seeded at a density of 3 × 106 cells per well, serum-starved for 20 hours, and lysed on day 3 after incubation with EMD 1214063. Proteins were separated by SDS-PAGE and blotted onto nitrocellulose membranes. Membranes were blocked with Tris-buffered saline and incubated in primary antibody solution (anti-pMet, anti-pAkt, anti-pERK1/2, anti-Gab1) at 4°C overnight. Proteins were detected by chemiluminescence, with VersaDoc MP 5000 imaging system equipped with Quantity One 1-D analysis software.
Cell Assay
Tepotinib (EMD-1214063) is a c-Met inhibitor that is both potent and selective. With an IC50 of 4 nM, it is >200 times more selective for c-Met than IRAK4, TrkA, Axl, IRAK1, and Mer.
Wound healing test and proliferation assays[1]
Wound healing tests were carried out as previously described. In brief, a scratch was produced with a sterile pipette tip on a monolayer of NCI-H441 lung cancer cells. The effect of EMD 1210463 and EMD 1204831 on closure of the cell gap was monitored over 24 hours in the presence or absence of 100 ng/mL HGF. All proliferation and colony formation assays were conducted in 4 replicates and included 4 DMSO vehicle controls. IC50 values were determined by 4PL fitting in GraphPad Prism v5.
Pharmacodynamic markers on ex vivo tumor samples[1]
c-Met autophosphorylation was investigated by Western blot analysis on frozen ex vivo tumor samples. The tumor tissue was mechanically homogenized, lysed using Precellys 24 homogenizer, or Precellys ceramic lysing tubes (PEQLab Ltd) according to the manufacturer's instructions. Further preparation of lysates and protein separation by SDS-PAGE were conducted as already described for EBC-1 cells. Histone H3 phosphorylation and biomarkers of cell-cycle arrest and apoptosis (cyclin D1, p27, and cleaved, activated capase-3) were analyzed by immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded sections. IHC was conducted using Discovery staining instruments, with the OmniMap Kit, according to the manufacturer's instructions. Sections were counterstained with hematoxylin.
Animal Protocol
Animal/Disease Models:CD-1 or BALB/C nude mice bearing human cancer cell lines KP-4, or EBC-1[1]
Doses: 6 and 15 mg/kg for mice bearing NSCLC EBC-1; 25, 50 and 200 mg/kg for mice bearing pancreatic carcinoma cell line KP-4.
Route of Administration: Injected daily; for 14-18 days
Experimental Results: Daily administration of 5 or 15 mg/kg to EBC-1 tumor-bearing mice resulted in effective inhibition or complete tumor regression, respectively. Induced dose-dependent tumor growth inhibition in mice bearing human pancreatic carcinoma KP-4 tumors.
The antitumor efficacy of EMD 1214063 or EMD 1204831 was investigated in mouse xenograft models. CD-1 or BALB/C nude mice were injected subcutaneously with human cancer cell lines KP-4, U87MG: 10 × 106 cells in 100 μL, Hs746T, EBC-1: 5 × 106 cells in 100 μL. As soon as the tumor reached the linear growth phase (70–150 mm3), tumor-bearing mice (10 mice/group) were injected daily with the indicated doses of EMD 1214063 or EMD 1204831, or vehicle. Body weight and tumor size [length (L) and width (W)] were measured twice weekly. The tumor volume was calculated using the formula L × W2/2. Statistical significance was determined by one-way ANOVA. P ≤ 0.05 were considered significant.
Pharmacokinetic and pharmacodynamic studies[1]
Plasma and tumor drug concentrations were measured using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). In brief, protein precipitation was carried out in methanol for plasma samples, and in ethanol/water 80:20 (v/v) using a Precellys 24 homogenizer for homogenized tumor samples. The HPLC/tandem mass spectrometry (MS-MS) system consisted of an Agilent 1100 Series HPLC system with a CTC HTC PAL Autosampler coupled to an Applied Biosystems API4000 mass spectrometer. HPLC separation was achieved on a reversed-phase column (Chromolith SpeedROD RP-18e, 50–3 mm) using gradient elution (eluent A: formic acid 0.1%; eluent B: acetonitrile). Selectivity was achieved using multiple reaction monitoring (MRM) for the MS/MS detection of the compounds. For the in vivo pharmacodynamic studies, all animal studies were conducted according to standard procedures approved by local animal welfare authorities. Mice were injected subcutaneously with 5 × 106 Hs746T cells (100 μL). Once the tumor volume had reached 600 to 1,000 mm3, mice were randomized into different experimental groups, receiving a single oral dose of 3, 10, 30, and 100 mg/kg of EMD 1214063, EMD 1204831, or vehicle. Tumor and plasma samples were collected at 3, 6, 12, 24, 48, 72, and 96 hours after treatment. Each experimental group comprised 4 mice per dose and time point. Samples of the tumor tissue were snap-frozen for pharmacokinetic and biomarker analyses, or formalin-fixed for immunohistochemical analysis.
ADME/Pharmacokinetics
Absorption
The absolute bioavailability of tepotinib following oral administration is approximately 72%. At the recommended dosage of 450mg once daily, the median Tmax is 8 hours and the mean steady-state Cmax and AUC0-24h were 1,291 ng/mL and 27,438 ng·h/mL, respectively. Co-administration with a high-fat, high-calorie meal increases the AUC and Cmax of tepotinib by approximately 1.6-fold and 2-fold, respectively.

Route of Elimination
Following oral administration, approximately 85% of the given dose is excreted in the feces with the remainder excreted in the urine. Unchanged parent drug accounts for roughly half of the dose excreted in the feces, with the remainder comprising the demethylated M478 metabolite, a glucuronide metabolite, the racemic M506 metabolite, and some minor oxidative metabolites. Unchanged parent drug also accounts for roughly half of the dose excreted in the urine, with the remainder comprising a glucuronide metabolite and a pair of N-oxide diastereomer metabolites.

Volume of Distribution
The mean apparent volume of distribution is 1,038L.

Clearance The apparent clearance of tepotinib is 23.8 L/h.
Metabolism / Metabolites
Tepotinib is metabolized primarily by CYP3A4 and CYP2C8, with some apparent contribution by unspecified UGT enzymes. The metabolite M506 is the major circulating metabolite, comprising approximately 40.4% of observed drug material in plasma, while the M668 glucuronide metabolite has been observed in plasma at much lower quantities (~4% of an orally administered dose). A total of 10 phase I and phase II metabolites have been detected following tepotinib administration, most of which are excreted in the feces.
Biological Half-Life
Following oral administration, the half-life of tepotinib is approximately 32 hours.
Toxicity/Toxicokinetics
Hepatotoxicity
In the prelicensure clinical trials of tepotinib in patients with solid tumors harboring MET mutations, liver test abnormalities were frequent although usually self-limited and mild. Some degree of ALT elevations arose in 44% of tepotinib treated patients and were above 5 times the upper limit of normal (ULN) in 4%. In these trials that enrolled 255 patients, dose interruptions due to ALT or AST elevations occurred in 3%, but permanent discontinuations in less than 1%. The liver test abnormalities had a median onset of 30 days after initiation of therapy. While serum aminotransferase elevations were occasionally quite high (5 to 20 times upper limit of normal), there were no accompanying elevations in serum bilirubin and no patient developed clinically apparent liver injury with jaundice. The product label for tepotinib recommends monitoring for routine liver tests before, at 2 week intervals during the first 3 months of therapy, and monthly thereafter as clinically indicated.
Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of tepotinib during breastfeeding. Because tepotinib is 98% bound to plasma proteins, the amount in milk is likely to be low. However, because of its potential toxicity in the breastfed infant and its half-life of 32 hours, the manufacturer recommends that breastfeeding be discontinued during tepotinib therapy and for 1 week after the last dose.

◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Tepotinib is approximately 98% protein-bound in plasma, primarily to serum albumin and alpha-1-acid glycoprotein. Plasma protein binding is independent of drug concentration at clinically relevant exposures.
References

[1]. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors. Clin Cancer Res, 2013, 19(11), 2941-2951.

[2]. The Effect of Selective c-MET Inhibitor on Hepatocellular Carcinoma in the MET-Active, β-Catenin-Mutated Mouse Model. Gene Expr. 2018 May 18;18(2):135-147.

[3]. IS4-1 - A Phase I Dose-Escalation Study of emd 1214063, an Oral Selective CMET Inhibitor, in Patients with Advanced Solid Tumors. Annals of Oncology. Volume 23, Supplement 11, October 2012, Page xi21.

Additional Infomation
See also: Tepotinib Hydrochloride (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H28N6O2.XHCL
Molecular Weight
492.57 (free base)
Exact Mass
528.204
CAS #
1103508-80-0
Related CAS #
1100598-32-0;1946826-82-9
PubChem CID
25171647
Appearance
Typically exists as solid at room temperature
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
7
Heavy Atom Count
38
Complexity
880
Defined Atom Stereocenter Count
0
SMILES
C(C1C=CC=C(C2=NC=C(OCC3CCN(C)CC3)C=N2)C=1)N1C(C=CC(C2C=CC=C(C#N)C=2)=N1)=O.Cl
InChi Key
YHHHGHDGBUUWIS-UHFFFAOYSA-N
InChi Code
InChI=1S/C29H28N6O2.ClH/c1-34-12-10-21(11-13-34)20-37-26-17-31-29(32-18-26)25-7-3-5-23(15-25)19-35-28(36)9-8-27(33-35)24-6-2-4-22(14-24)16-30;/h2-9,14-15,17-18,21H,10-13,19-20H2,1H3;1H
Chemical Name
3-[1-[[3-[5-[(1-methylpiperidin-4-yl)methoxy]pyrimidin-2-yl]phenyl]methyl]-6-oxopyridazin-3-yl]benzonitrile;hydrochloride
Synonyms
EMD-1214063 hydrochloride; 8B73AZL5XP; 1103508-80-0; Tepotinib hydrochloride anhydrous; UNII-8B73AZL5XP; Benzonitrile, 3-(1,6-dihydro-1-((3-(5-((1-methyl-4-piperidinyl)methoxy)-2-pyrimidinyl)phenyl)methyl)-6-oxo-3-pyridazinyl)-, hydrochloride (1:1); SCHEMBL1295616; YHHHGHDGBUUWIS-UHFFFAOYSA-N; 3-(1-{3-[5-(1-methyl-piperidin-4-ylmethoxy)-pyrimidin-2-yl]-benzyl}-6-oxo-1,6-dihydro-pyridazin-3-yl)-benzonitrile hydrochloride;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03940703 Active
Recruiting
Drug: Tepotinib
Drug: Osimertinib
Non-small Cell Lung Cancer EMD Serono Research & Development
Institute, Inc.
September 19, 2019 Phase 2
NCT02864992 Active
Recruiting
Drug: Tepotinib Lung Adenocarcinoma Stage IIIB/IV
Amplification
EMD Serono Research & Development
Institute, Inc.
September 13, 2016 Phase 2
NCT05120960 Recruiting Drug: tepotinib plus osimertinib
Drug: tepotinib
Brain Tumor M.D. Anderson Cancer Center February 27, 2023 Phase 1
NCT04647838 Recruiting Drug: Tepotinib Solid Tumor
MET Amplification
Chungbuk National University
Hospital
January 16, 2020 Phase 2
NCT05782361 Recruiting Drug: Tepotinib
Drug: Pembrolizumab
Non Small Cell Lung Cancer
Advanced Cancer
Institute of Cancer Research,
United Kingdom
May 3, 2023 Phase 1
Contact Us