Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Metabolite of resveratrol; anti-fat accumulation
|
---|---|
ln Vitro |
R-4G (1 μM) partially prevented 0.3 M palmitic acid-induced triglyceride accumulation and reduced the expression of fat transporter protein 2 in AML12 hepatocytes [1].
|
Cell Assay |
Steatosis is characterized primarily by excessive lipid accumulation in the form of triglycerides in the liver. Although resveratrol shows a low bioavailability, it has significant positive effects on steatosis. The aim of this study was to analyze whether some phase II and microbial resveratrol metabolites (trans-resveratrol-4'-O-glucuronide (R-4G); trans-resveratrol-3-O-glucuronide (R-3G); trans-resveratrol-3-O-sulfate (R-S) and dihydro-resveratrol (DH-R) were effective in reducing hepatocyte fat accumulation. An in vitro model mimicking the hepatocyte situation in fatty liver was developed by incubating mouse AML12 hepatocytes with palmitic acid (PA). For cell treatments, hepatocytes were incubated with 1, 10, or 25 µM resveratrol or its metabolites. Triglycerides and cell viability were assessed using commercial kits. Protein expression of enzymes and transporters involved in triglyceride metabolism were analyzed by western blot. We show for the first time that resveratrol and all the tested metabolites, at 1 µM, partially prevented lipid accumulation induced by the saturated fatty acid PA in AML12 hepatocytes. This effect was mainly due to the inhibition of de novo lipogenesis. This demonstrates that the low bioavailability of resveratrol is not as big a problem as it was thought to be, because resveratrol metabolites contribute to the delipidating effects of the parent compound.[1]
|
References | |
Additional Infomation |
Trans-Resveratrol 4'-O-glucuronide is a glycoside and a stilbenoid.
|
Molecular Formula |
C20H20O9
|
---|---|
Molecular Weight |
404.37
|
Exact Mass |
404.11
|
CAS # |
387372-20-5
|
PubChem CID |
5273284
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.6±0.1 g/cm3
|
Boiling Point |
750.3±60.0 °C at 760 mmHg
|
Melting Point |
144-146ºC
|
Flash Point |
268.8±26.4 °C
|
Vapour Pressure |
0.0±2.6 mmHg at 25°C
|
Index of Refraction |
1.760
|
LogP |
0.63
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
29
|
Complexity |
564
|
Defined Atom Stereocenter Count |
5
|
SMILES |
C1=CC(=CC=C1/C=C/C2=CC(=CC(=C2)O)O)O[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)C(=O)O)O)O)O
|
InChi Key |
CDEBVTGYVFHDMA-OTPOQTMVSA-N
|
InChi Code |
InChI=1S/C20H20O9/c21-12-7-11(8-13(22)9-12)2-1-10-3-5-14(6-4-10)28-20-17(25)15(23)16(24)18(29-20)19(26)27/h1-9,15-18,20-25H,(H,26,27)/b2-1+/t15-,16-,17+,18-,20+/m0/s1
|
Chemical Name |
(2S,3S,4S,5R,6S)-6-[4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
|
Synonyms |
R-4G; 387372-20-5; trans-Resveratrol 4'-O-glucuronide; Trans resveratrol 4o-b-D-glucuronide; resveratrol-4'-O-glucuronide; (2S,3S,4S,5R,6S)-6-[4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid; trans-Resveratrol-4'-O-D-Glucuronide; cis Resveratrol 4O-b-D-Glucuronide; (2S,3S,4S,5R,6S)-6-{4-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]phenoxy}-3,4,5-trihydroxyoxane-2-carboxylic acid;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4730 mL | 12.3649 mL | 24.7298 mL | |
5 mM | 0.4946 mL | 2.4730 mL | 4.9460 mL | |
10 mM | 0.2473 mL | 1.2365 mL | 2.4730 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.