yingweiwo

1-Methylcyclopropene

Alias: 1-Methylcyclopropene; 1-MCP
Cat No.:V87001 Purity: Content ≥3.5%, Gas purity ≥98%
1-Methylcyclopropene (1-MCP) is an ethylene inhibitor that binds irreversibly to ethylene receptors, thereby blocking the ethylene binding site.
1-Methylcyclopropene
1-Methylcyclopropene Chemical Structure CAS No.: 3100-04-7
Product category: Others 15
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
1-Methylcyclopropene (1-MCP) is an ethylene inhibitor that binds irreversibly to ethylene receptors, thereby blocking the ethylene binding site. 1-Methylcyclopropene can increase the activity of SOD and POD. 1-Methylcyclopropene can delay the softening of Actinidia arguta fruit, extending its storage and shelf life. 1-Methylcyclopropene delays the degradation of cell wall components (including pectin, cellulose, and hemicellulose) by reducing the activity of cell wall modification enzymes.
Biological Activity I Assay Protocols (From Reference)
Toxicity/Toxicokinetics
Non-Human Toxicity Values
LD50 Rat (albino) oral >5000 mg/kg /EthylBloc, powdered product/
LD50 Rabbit (albino) dermal >2000 mg/kg /EthylBloc, powdered product/
LC50 Rat (albino) inhalation (4hr) >165 ppm /1-MCP gas/
References

[1]. 1-Methylcyclopropene treatment delays the softening of Actinidia arguta fruit by reducing cell wall degradation and modulating carbohydrate metabolism. Food Chem. 2023 Jun 15;411:135485.

[2]. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Hortic Res. 2020 Dec 3;7(1):208.

Additional Infomation
1-methylcyclopropene is a member of the class of cyclopropenes that is cyclopropene in which the hydrogen at position 1 has been replaced by a methyl group. A gas at room temperture and pressure, it is a (synthetic) ethylene perception inhibitor and is used to prolong the life of cut and potted flowers, other ornamental plants, and fruit. It has a role as a plant growth regulator and an agrochemical. It is a member of cyclopropenes and a cycloalkene.
1-Methylcyclopropene has been reported in Prunus avium with data available.
Mechanism of Action
1-MCP has a mode of action in plants which is a non-persistent and non-toxic mode of action. 1-MCP prevents the natural chemical, ethylene, from binding to ethylene receptors in plants. This mode of action is not relevant in animals, since ethylene receptors are not present in animal tissues.
It was first noted that 2, 5-norbornadiene seemed to counteract ethylene. Studies showed it was a competitive inhibitor of ethylene responses, and knowledge that ethylene antagonists like ethylene agonists bound to silver in the same order as they were active as inhibitors was obtained. Ring strain appeared to be a primary factor that led to trans-cyclooctene then to diazocyclopentadiene. This same concept allowed for the use of chemical concepts that lead to cyclopropenes. More recent work indicates additional factors can come into play in the development of ethylene antagonists at the receptor level and these are now being utilized to find additional and improved antagonists. 1-MCP is likely to remain a primary means of controlling ethylene responses for the immediate future.
Volatile esters are major aroma components of apple, and an alcohol acyltransferase (AAT) catalyzes the final step in ester biosynthesis. The gene MdAAT2, which encodes a predicted 51.2 kDa protein containing features of other acyl transferases, was isolated from Malus domestica Borkh. (cv. Golden Delicious). In contrast to other apple varieties, the MdAAT2 gene of Golden Delicious is exclusively expressed in the fruit. The MdAAT2 protein is about 47.9 kDa and mainly localized in the fruit peel, as indicated by immunoblot and immunolocalization analysis. Northern blot and immunoblot analysis showed that the transcription and translation of MdAAT2 have a positive correlation with apple AAT enzyme activity and ester production, except in the later ripening stage, suggesting that MdAAT2 is involved in the regulation of ester biosysthesis and that a post-translation modification may be involved in regulation of AAT enzyme activity. Tissue disk assays of fruit peel revealed that using extraneous alcohols can recover the corresponding ester formation. Transcription and translation of MdAAT2 were both depressed by 1-methylcyclopropene (1-MCP) treatment and subsequent ester production was also prevented. These results suggest that: (1) ester production is mainly regulated by MdAAT2; (2) ethylene is also involved in this regulatory progress and (3) ester compounds rely principally on the availability of substrates.
By screening for ethylene response mutants in Arabidopsis, a novel mutant, eer2, was isolated which displays enhanced ethylene responses. On a low nutrient medium (LNM) light-grown eer2 seedlings showed a significant hypocotyl elongation in response to low levels of 1-amino-cyclopropane-1-carboxylate (ACC), the precursor of ethylene, compared with the wild type, indicating that eer2 is hypersensitive to ethylene. Treatment with 1-MCP (1-methylcyclopropene), a competitive inhibitor of ethylene signalling, suppressed this hypersensitive response, demonstrating that it is a bona fide ethylene effect. By contrast, roots of eer2 were less sensitive than the wild type to low concentrations of ACC. The ethylene levels in eer2 did not differ from the wild type, indicating that ethylene overproduction is not the primary cause of the eer2 phenotype. In addition to its enhanced ethylene response of hypocotyls, eer2 is also affected in the pattern of senescence and its phenotype depends on the nutritional status of the growth medium. Furthermore, linkage analysis of eer2 suggests that this mutant defines a new locus in ethylene signalling.
Auxin, which has been implicated in multiple biochemical and physiological processes, elicits three classes of genes (Aux/IAAs, SAURs and GH3s) that have been characterized by their early or primary responses to the hormone. A new GH3-like gene was identified from a suppressive subtraction hybridization (SSH) library of pungent pepper (Capsicum chinense L.) cDNAs. This gene, CcGH3, possessed several auxin- and ethylene-inducible elements in the putative promoter region. Upon further investigation, CcGH3 was shown to be auxin-inducible in shoots, flower buds, sepals, petals and most notably ripening and mature pericarp and placenta. Paradoxically, this gene was expressed in fruit when auxin levels were decreasing, consistent with ethylene-inducibility. Further experiments demonstrated that CcGH3 was induced by endogenous ethylene, and that transcript accumulation was inhibited by 1-methylcyclopropene, an inhibitor of ethylene perception. When over-expressed in tomato, CcGH3 hastened ripening of ethylene-treated fruit. These results implicate CcGH3 as a factor in auxin and ethylene regulation of fruit ripening and suggest that it may be a point of intersection in the signaling by these two hormones.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C4H6
Molecular Weight
54.09
Exact Mass
54.046
CAS #
3100-04-7
PubChem CID
151080
Appearance
Gas
Density
0.8±0.1 g/cm3
Boiling Point
6.8±7.0 °C at 760 mmHg
Flash Point
-72.5±6.6 °C
Vapour Pressure
1435.2±0.0 mmHg at 25°C
Index of Refraction
1.474
LogP
1.79
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
0
Rotatable Bond Count
0
Heavy Atom Count
4
Complexity
51.1
Defined Atom Stereocenter Count
0
SMILES
CC1=CC1
InChi Key
SHDPRTQPPWIEJG-UHFFFAOYSA-N
InChi Code
InChI=1S/C4H6/c1-4-2-3-4/h2H,3H2,1H3
Chemical Name
1-methylcyclopropene
Synonyms
1-Methylcyclopropene; 1-MCP
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 18.4877 mL 92.4385 mL 184.8771 mL
5 mM 3.6975 mL 18.4877 mL 36.9754 mL
10 mM 1.8488 mL 9.2439 mL 18.4877 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us