Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
15N labeled Hydrazine; gluconeogenesis
|
---|---|
ln Vitro |
Hydrazine sulfate is an anticachexia agent which interrupts host energy wasting as a result of the malignant process. An inhibitor of gluconeogenesis at the phosphoenolpyruvate carboxykinase (PEP CK) reaction, this agent has been shown in randomized, placebo-controlled, double-blind trials to improve glucose tolerance, reduce glucose turnover, increase caloric intake, and increase or stabilize weight; in single-arm controlled trials, this agent has been shown to increase appetite, improve performance status, decrease pain, diminish anorexia, normalize laboratory indices, stabilize tumor growth, induce tumor regression, and promote survival, while inducing little to no important clinical side effects. In view of its demonstrated capacity to effect anticancer response, this drug is suggested for trial as a sole agent in early drug-resistant cancer, in combination with cytotoxic and related therapies, and in conjunction with total parenteral nutrition. It is postulated that effective control of the mechanisms associated associated with cancer cachexia may contribute to control of malignant disease[1].
|
References |
Molecular Formula |
H615N2O
|
---|---|
Molecular Weight |
52.05
|
Exact Mass |
52.042
|
CAS # |
145571-73-9
|
PubChem CID |
16213581
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.073 g/mL at 25ºC
|
Boiling Point |
120.1ºC(lit.)
|
Melting Point |
-51.7ºC(lit.)
|
Flash Point |
73ºC
|
Index of Refraction |
n20/D 1.428(lit.)
|
LogP |
0.155
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
3
|
Complexity |
0
|
Defined Atom Stereocenter Count |
0
|
SMILES |
[15NH2][15NH2].O
|
InChi Key |
IKDUDTNKRLTJSI-AWQJXPNKSA-N
|
InChi Code |
InChI=1S/H4N2.H2O/c1-2;/h1-2H2;1H2/i1+1,2+1;
|
Synonyms |
Hydrazine-15N2 monohydrate; 145571-73-9; ()hydrazine hydrate; Hydrazine hydrate-15N2; ((1)N)hydrazine hydrate; DTXSID10584048; (~15~N_2_)Hydrazine--water (1/1); Hydrazine-15N2 monohydrate, 98 atom % 15N;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
Typically soluble in DMSO (e.g. 10 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 19.2123 mL | 96.0615 mL | 192.1230 mL | |
5 mM | 3.8425 mL | 19.2123 mL | 38.4246 mL | |
10 mM | 1.9212 mL | 9.6061 mL | 19.2123 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.