yingweiwo

trans-β-Ocimene [(E)-beta-ocimene]

Alias: (E)-beta-ocimene; 3779-61-1; (3E)-3,7-dimethylocta-1,3,6-triene; trans-beta-Ocimene; Ocimene trans-beta-form; 3,7-dimethyl-1,3E,6-octatriene; 1,3,6-Octatriene, 3,7-dimethyl-, (E)-; UNII-38BQ4UYY06;
Cat No.:V84002 Purity: ≥98%
trans-β-Ocimene [(E)-beta-ocimene] is a compound that can be isolated from Melaleuca viridiflora.
trans-β-Ocimene [(E)-beta-ocimene]
trans-β-Ocimene [(E)-beta-ocimene] Chemical Structure CAS No.: 3779-61-1
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of trans-β-Ocimene [(E)-beta-ocimene]:

  • β-Ocimene (E/Z-mixture)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
trans-β-Ocimene [(E)-beta-ocimene] is a compound that can be isolated from Melaleuca viridiflora.
Biological Activity I Assay Protocols (From Reference)
Targets
Naturally occurring flavoring agents
ln Vitro
Flatheaded borers (FHB; Chrysobothris spp.), are woodboring-beetles that lay their eggs in the bark and cambium of deciduous trees in North America. Females often target stressed host-plants for oviposition. The reason why is unknown; however, stressed plants often suffer various induced phytochemical changes that may enhance larval infestation success depending on the stressor such as induced upregulation of defenses, reallocation of nutrients, and changes to volatile organic compound (VOC) emissions. To understand attraction of FHB to specific stress-induced changes, we analyzed phytochemical changes associated with stress treatments and attractiveness maple trees to FHB. Trees were stressed by: (1) chemical stress (pelargonic acid herbicide), (2) physical stress (physically removing leaves), and (3) physical stress (removing portions of bark near the root crown). After reflush of defoliated trees, bark tissues where FHB larvae feed were analyzed for nutritional changes (carbon and nitrogen), anti-nutritive changes (polyphenols and tannins) and emissions of foliar VOCs. At the end of the growing season, trees were assessed for FHB larval presence and oviposition attempts. There were more larvae and oviposition attempts on trees stressed by herbicide application. Compared to other treatments, herbicide-stressed trees had greater nitrogen and total polyphenol concentrations. Greater nitrogen may play a role in the fitness of feeding larvae, and the greater polyphenol concentration may stimulate female oviposition in the herbicide stressed trees. Females may be able to locate the herbicide-stressed trees by using volatile cues such as increases in limonene, α-farnesene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and hexenyl acetate. [1]
Several volatile organic compounds were only present in either control or herbicided treatments, but many of these compounds were not statistically significant, including DMNT and sabinene. Despite not being significant, DMNT contributed to much of the variation that was found between the treatments (Table 3). Because several VOCs or the ratio of the VOCs could be important for host selection, compounds that were not statistically significant in the ANOVA cannot be excluded from host selection importance if they were important to the overall plume of the tree. From the study findings, we can imagine three possible scenarios about the role these compounds might play in host selection by Chrysobothris. (1) The presence of specific compounds may act as a susceptible host cue (α-thujene, α-farnesene, bornyl chloride, methyl salicylate, caprolactam, caryophyllene, and DMNT). (2) The absence of specific compounds may act as a susceptible host cue (sabinene, 3-carene, and β-ocimene). (3) Changes in the percentages of specific VOC compounds may act as a susceptible host cue (α-pinene, β-ocimene, hexenyl acetate, limonene, and linalool).
These three assumptions offer directions for future experiment to test the responsiveness of FHB to specific compounds. Physiological methods such as electroantennography can be used to narrow down the list of compounds that these borers can detect before attraction assays. However, to date, it has been difficult to collect the quantity of beetles necessary to sacrifice for this method of analysis. The GC-EAD analysis performed on a different buprestid, emerald ash borer, revealed at least 16 antennally-active compounds from their host plant, Fraxinus mandshurica Rupr., including: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, (Z)-3-hexen-1-yl acetate, hexyl acetate, (E)-β-ocimene, linalool, 4,8-dimethyl-1,3,7-nonatriene (DMNT), and E,E-α-farnesene (Rodriguez-Saona et al. 2006). Some of the compounds are also present in the herbicide stressed maple emissions such as (Z)-3-hexen-1-yl acetate, (E)-β-ocimene, linalool, 4,8-dimethyl-1,3,7-nonatriene (DMNT), and E, E-α-farnesene, and could potentially be signals for FHB if the olfactory receptors are conserved within Buprestidae [1].
References

[1]. Herbicide Stress Induces beetle Oviposition on Red Maples. J Chem Ecol. 2024 Aug 26;50(9-10):515–528.

Additional Infomation
(E)-beta-ocimene is a beta-ocimene that consists of octa-1,3,6-triene bearing two methyl substituents at positions 3 and 7 (the 3E-isomer). It has a role as a plant metabolite.
beta-Ocimene has been reported in Camellia sinensis, Salvia rosmarinus, and other organisms with data available.
See also: Cannabis sativa subsp. indica top (part of).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H16
Molecular Weight
136.23
Exact Mass
136.125
CAS #
3779-61-1
Related CAS #
13877-91-3
PubChem CID
5281553
Appearance
Colorless to light yellow liquid
Density
0.776g/cm3
Boiling Point
175.2ºC at 760mmHg
Flash Point
46.9ºC
Index of Refraction
1.458
LogP
3.475
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
0
Rotatable Bond Count
3
Heavy Atom Count
10
Complexity
155
Defined Atom Stereocenter Count
0
SMILES
CC(=CC/C=C(\C)/C=C)C
InChi Key
IHPKGUQCSIINRJ-CSKARUKUSA-N
InChi Code
InChI=1S/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7-8H,1,6H2,2-4H3/b10-8+
Chemical Name
(3E)-3,7-dimethylocta-1,3,6-triene
Synonyms
(E)-beta-ocimene; 3779-61-1; (3E)-3,7-dimethylocta-1,3,6-triene; trans-beta-Ocimene; Ocimene trans-beta-form; 3,7-dimethyl-1,3E,6-octatriene; 1,3,6-Octatriene, 3,7-dimethyl-, (E)-; UNII-38BQ4UYY06;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Typically soluble in DMSO (e.g. 10 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 7.3405 mL 36.7026 mL 73.4053 mL
5 mM 1.4681 mL 7.3405 mL 14.6811 mL
10 mM 0.7341 mL 3.6703 mL 7.3405 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us