yingweiwo

Dextran T500(MW:500000)

Alias: DEXTRAN; 9004-54-0; Dextran 40; 2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexanal; Macrodex; Hexopyranosyl-(1->6)hexopyranosyl-(1->6)hexose; Dextran 70; 6-O-(6-O-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-D-glucose;
Cat No.:V83347 Purity: ≥98%
Dextran T500 has an inhibitory effect on platelet aggregation and coagulation factors.
Dextran T500(MW:500000)
Dextran T500(MW:500000) Chemical Structure CAS No.: 9004-54-0
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Biological Activity I Assay Protocols (From Reference)
Targets
Glucose polymer
ln Vitro
Dextran (MW 40000) is a biochemical reagent that can be utilized in organic compounds or biomaterials for research in the life sciences.
ln Vivo
Dextran can be used in animal modeling to construct a mouse paw edema model.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption
Dextran presents a very low oral bioavailability that is reduced as the chain gets longer. Thus, the bioavailability of dextran is inversely proportional to the length of the carbohydrate chain.

Route of Elimination
The elimination of dextran will depend on the length of the carbohydrate chain, the administration route, and the molecular weight. For dextran 1, it is reported to be mainly secreted unchanged in the urine in a ratio of 80% of the administered dose when administered parentally. It is registered that the weight threshold for unrestricted glomerular filtration is about 15 kDa and if the dextran overpasses 50 kDa it will not be renally eliminated in any significant amount.

Volume of Distribution
The reported volume of distribution of dextran suggested a distribution throughout the blood volume. This volume of distribution is reported to be of around 120 ml. The organ that presented a higher accumulation of dextran was the liver.
Metabolism / Metabolites
Long chains of dextran such as dextran 60 are highly metabolized in the liver until formation of lower molecular weight products before being excreted from the body.
Biological Half-Life
The elimination half-life will depend on the length of the carbohydrate chain. The higher the molecular weight of the dextran the longer it will be the elimination half-life. The half-life will go from 1.9 hours from dextran 1 to 42 hours in the case of dextran 60.
Toxicity/Toxicokinetics
Protein Binding
Dextran is highly retained in the vascular system by binding to plasma proteins including albumin.
References

[1]. Infusion rate and plasma volume expansion of dextran and albumin in the septic guinea pig. Acta Anaesthesiol Scand. 2014 Jan;58(1):44-51.

Additional Infomation
Dextran is a polysaccharide that differs from others in that its glucose units are joined together 1:6 glucoside links. The main chain of glucose has short branches at frequent intervals which are probably joined by 1:3 and 1:4 glucoside links. The chains can be composed of about 200,000 glucose units. Many bacteria, like Leuconostoc, can synthesize dextran from sucrose, and this activity is used commercially to obtain dextran. Dextran 40 is a sterile, nonpyrogenic preparation of low molecular weight dextran (average mol. wt. 40,000) in 5% Dextrose Injection or 0.9% Sodium Chloride Injection. It is administered by intravenous infusion. Dextran 75 is a complex branched glucan with an average molecular weight 75000 Daltons. It is produced from certain bacteria that with α-1,6 glycosidic linkages between glucose molecules and α-1,3 linkages between branches. When labelled with technetium Tc99m, dextran 75 is intravenously administered as an imaging agent to detect and diagnose conditions in the vascular compartment such as pericardial effusion or ventricular aneurysm.
A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes.
Drug Indication
Dextran is used as the restoration of blood mass during surgical interventions if there is hypovolemia due to trauma or dehydration. It is as well used after the presence of hemorrhage in cases of blood loss to a level inferior to 15% of the blood mass, if compatibility test cannot be completed or when blood lots need to be tested for pathogen detection. Dextran is also used for the prevention of profound postoperative venous thrombosis. Dextran as well presents ophthalmic applications as solutions or ointments for the temporary relief of xerophthalmia or minor ocular irritations.
Pharmacodynamics It is reported that dextran presents an effect on the hemostatic system in particular by prolonging bleeding time. In the same trials, dextran is reported to reduce emboli, reduce platelet adhesiveness and produce hemodilution. These effects have been showed to be greater proportionally with the increase in the molecular weight of the dextran.
echanism of Action In preclinical studies, the mechanism of action is thought to be related to the blockage of the uptake of tissue plasminogen activator by mannose-binding receptors. This process has a direct effect by enhancing endogenous fibrinolysis.
Uses
Cosmetic Ingredient Review Link
Cosmetic Ingredient Review (CIR)
Bacteria growing on a sucrose substrate produce this polysaccharide, which is composed of alpha-D-glucopyranosyl units with different branching and chain lengths; Used in soft center confections, as a barley malt substitute, and as a plasma volume expander; Mixed ethers and esters can be used in lacquers; [Merck Index] Used as a formulation and processing aid, stabilizer or thickener, surface finishing agent, and texturizer for foods; [FDA]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H32O16
Molecular Weight
500000
Exact Mass
504.169
CAS #
9004-54-0
Appearance
White to off-white solid powder
Density
1.8±0.1 g/cm3
Boiling Point
952.8±65.0 °C at 760 mmHg
Melting Point
-114.22ºC
Flash Point
327.7±27.8 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.652
LogP
-4.26
Synonyms
DEXTRAN; 9004-54-0; Dextran 40; 2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexanal; Macrodex; Hexopyranosyl-(1->6)hexopyranosyl-(1->6)hexose; Dextran 70; 6-O-(6-O-beta-D-Glucopyranosyl-beta-D-glucopyranosyl)-D-glucose;
HS Tariff Code
2934.99.9001
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~1.43 mM)
DMSO : ~100 mg/mL (~1.43 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.0020 mL 0.0100 mL 0.0200 mL
5 mM 400.0000 nL 0.0020 mL 0.0040 mL
10 mM 200.0000 nL 0.0010 mL 0.0020 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Puberty, Diabetes, and the Kidneys, When Eustress Becomes Distress (PANTHER Study)
CTID: NCT05008276
Status: Recruiting
Date: 2024-04-11
Vision Restoration With a Collagen Crosslinked Boston Keratoprosthesis Unit
CTID: NCT02863809
Phase: Phase 1/Phase 2
Status: Completed
Date: 2023-05-10
Renal Hemodynamics, Energetics and Insulin Resistance: A Follow-up Study
CTID: NCT05530356
Status: Enrolling by invitation
Date: 2022-11-02
Dextran, a Plasma Expander, Offers New Hope for Patients With Decompensated Liver Cirrhosis and Acute Kidney Injury
CTID: NCT03070353
Phase: Phase 2/Phase 3
Status: Completed
Date: 2017-03-03
Clinical, Inflammatory, and Economic Impact of Dextran 70 in Treating Spontaneous Bacterial Peritonitis
CTID: NCT00570960
Phase: Phase 4
Status: Terminated
Date: 2014-12-03
Effect of Macrodex versus lactated Ringer on coagulation in major surgery. A randomised clincal trial.
EudraCT: 2012-005040-20
Phase: Phase 4
Status: Completed
Date: 2013-01-09
Coagulation effect of four common plasma volume expanders
EudraCT: 2007-000729-24
Phase: Phase 4
Status: Completed
Date: 2007-05-15
Contact Us