Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Targets |
Cereblon; RNA
|
---|---|
ln Vitro |
Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA[1].
|
References |
Molecular Formula |
C53H57F4N9O12S
|
---|---|
Molecular Weight |
1120.13140559196
|
Exact Mass |
1119.378
|
CAS # |
2759351-69-2
|
Related CAS # |
Dovitinib-RIBOTAC;2759351-68-1
|
PubChem CID |
168265390
|
Appearance |
Light yellow to yellow solid powder
|
Hydrogen Bond Donor Count |
8
|
Hydrogen Bond Acceptor Count |
22
|
Rotatable Bond Count |
23
|
Heavy Atom Count |
79
|
Complexity |
2030
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCOC(=O)C1=C(/C(=C/C2=CC(=C(C=C2)OCCOCCOCCOCCNC(=O)NCCN3CCN(CC3)C4=CC5=C(C=C4)N=C(N5)C6=C(C7=C(C=CC=C7F)NC6=O)N)O)/SC1=NC8=CC=CC=C8)O.C(=O)(C(F)(F)F)O
|
InChi Key |
SSLPJCLVPXUGSX-GLWXAOSUSA-N
|
InChi Code |
InChI=1S/C51H56FN9O10S.C2HF3O2/c1-2-70-50(65)44-46(63)41(72-49(44)56-33-7-4-3-5-8-33)30-32-11-14-40(39(62)29-32)71-28-27-69-26-25-68-24-23-67-22-16-55-51(66)54-15-17-60-18-20-61(21-19-60)34-12-13-36-38(31-34)58-47(57-36)43-45(53)42-35(52)9-6-10-37(42)59-48(43)64;3-2(4,5)1(6)7/h3-14,29-31,62-63H,2,15-28H2,1H3,(H,57,58)(H3,53,59,64)(H2,54,55,66);(H,6,7)/b41-30-,56-49?;
|
Chemical Name |
ethyl (5Z)-5-[[4-[2-[2-[2-[2-[2-[4-[2-(4-amino-5-fluoro-2-oxo-1H-quinolin-3-yl)-3H-benzimidazol-5-yl]piperazin-1-yl]ethylcarbamoylamino]ethoxy]ethoxy]ethoxy]ethoxy]-3-hydroxyphenyl]methylidene]-4-hydroxy-2-phenyliminothiophene-3-carboxylate;2,2,2-trifluoroacetic acid
|
Synonyms |
Dovitinib-RIBOTAC (TFA); 2759351-69-2; HY-139682A; CS-0434501; ethyl (5Z)-5-[[4-[2-[2-[2-[2-[2-[4-[2-(4-amino-5-fluoro-2-oxo-1H-quinolin-3-yl)-3H-benzimidazol-5-yl]piperazin-1-yl]ethylcarbamoylamino]ethoxy]ethoxy]ethoxy]ethoxy]-3-hydroxyphenyl]methylidene]-4-hydroxy-2-phenyliminothiophene-3-carboxylate;2,2,2-trifluoroacetic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO :~100 mg/mL (~89.28 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.8928 mL | 4.4638 mL | 8.9275 mL | |
5 mM | 0.1786 mL | 0.8928 mL | 1.7855 mL | |
10 mM | 0.0893 mL | 0.4464 mL | 0.8928 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.