yingweiwo

(Rac)-LY341495

Alias: (Rac)-LY341495; LY 341495; SCHEMBL24606222;
Cat No.:V77365 Purity: ≥98%
(Rac)-LY341495 is the inactive isomer of LY341495 and could be utilized as a control compound in experiments.
(Rac)-LY341495
(Rac)-LY341495 Chemical Structure Product category: Others 13
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of (Rac)-LY341495:

  • LY-341495
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(Rac)-LY341495 is the inactive isomer of LY341495 and could be utilized as a control compound in experiments. LY341495 is a metabotropic glutamate receptor (mGluR) antagonist, with IC50s of 21 nM, 14 nM, 7.8 μM, 8.2 μM, and 170 nM for mGlu2, mGlu3, mGlu1a, mGlu5a, mGlu8, mGlu7 and mGlu4 receptors, respectively. 990 nM and 22 μM.
Biological Activity I Assay Protocols (From Reference)
Targets
Metabotropic glutamate receptor (mGluR)
ln Vitro
Effects of LY341495 on Akt and Wnt pathway proteins [2]
The mGlu2/3 antagonist LY341495 was used to examine the effects of blocking the mGlu2/3 on Akt and Wnt pathway proteins. Repeated treatment with 3.0 mg/kg of LY341495 decreased Dvl-2, pGSK-3α/β and β-catenin protein levels but Dvl-1, Dvl-3 and GSK-3α/β were unaffected in both the PFC and STR (Fig. 3a and b). In addition, to changes in the Wnt proteins, a reduction in pAkt Ser473 but not in total Akt or pAkt Thr308 were observed in the PFC and STR (Fig. 3c and d). A lower dose of repeated LY341495 (1.0 mg/kg) was also used and had no effect on Akt or Wnt pathway proteins tested in the PFC or STR (data not shown). Finally, changes in Akt and Wnt pathway proteins were assessed following acute administration of LY341495. Decreases in pGSK-3α/β (Fig. 4a and b) and pAkt Ser473 (Fig. 4c and d) were observed in the PFC and STR following acute administration of LY341495 (3.0 mg/kg). Therefore, acute administration of LY341495 decreased pAkt and pGSK-3 levels but repeated treatment (3.0 mg/kg) is needed to reduce β-catenin levels. Furthermore, LY341495 had the generally the opposite effect following acute and chronic administration compared to mGlu2/3 agonist, LY379268.
ln Vivo
LY341495 (0.3, 1 and 3 mg/kg, ip) exhibits lower levels of insight into the state [1]. LY341495 (3.0 mg/kg) reduced Dvl-2, pGSK-3α/β and β-catenin protein levels, but Dvl-1, Dvl-3 and GSK-3α/β were not activated in PFC and STR. Compared with the mGlu2/3 stimulant LY379268, LY341495 generally produces just the right effect after fast and fast[2]. c-Fos expression induced by LY341495 (3 mg/kg, i.p., 2.5 hours) was not altered in either KO brain. In mGluR3-KO, LY341495 has little activity in the central extended amygdala [central amygdala] nucleus, nucleus of cancellation (CeL) and bed nucleus of stria terminalis, dorsal nucleus (BSTLD) [3].
Experimental evidence suggests that metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists affect cognitive function, although contradictory findings have been reported. To clarify the role of mGlu2/3 receptor antagonists in one aspect of cognition, the present study investigated the effects of a broad range of doses of the mGlu2/3 receptor antagonist LY341495 on post-training recognition memory components (storage and/or retrieval) in rats. The efficacy of LY341495 in antagonizing the extinction of recognition memory was also investigated. The novel object recognition test was used as the memory test. The highest LY341495 doses administered (0.3, 1, and 3 mg/kg) disrupted performance in this recognition memory procedure in rats at all delay conditions tested, whereas administration of lower doses (0.05 and 0.1 mg/kg) did not impair recognition memory. Moreover, administration of the low LY341495 doses (0.05 and 0.1 mg/kg) counteracted the extinction of recognition memory. The present results indicate that administration of the mGlu2/3 receptor antagonist LY341495 can either impair or enhance recognition memory in rats, depending on the dose of the compound and delay period used. Thus, together with previously reported findings, the present data suggest complex effects of this compound on cognitive function, particularly recognition memory.[1]
Animal Protocol
Six experimental groups (each with ten rats) are created by randomly assigning the rats: vehicle and 0.05, 0.1, 0.3, 1, and 3 mg/kg LY341475. The LY341495 doses are selected on the basis of results from previous Published studies that evaluated the effects of this compound on cognition. Training: Two 2-minute trials were given to the rats during the training session. Right after T1, the animals are given either LY341495 or the vehicle. Given that untreated control rats in these experiments still have intact recognition memory, an ITI of one hour is employed with a 2-min trial duration.
References

[1]. The metabotropic glutamate 2/3 receptor antagonist LY341495 differentially affects recognition memory in rats. Behav Brain Res. 2012 May 1;230(2):374-9.

[2]. Regulation of Akt and Wnt signaling by the group II metabotropic glutamate receptor antagonist LY341495 and agonist LY379268.J Neurochem. 2011 Jun;117(6):973-83.

[3]. Use of MGLUR2 and MGLUR3 knockout mice to explore in vivo receptor specificity of the MGLUR2/3 selective antagonist LY341495. Neuropharmacology. 2009 Aug;57(2):172-82. Epub 2009 May 27.

[4]. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases. Pain. 2016 Aug;157(8):1711-23.

[5]. LY341495 Is a Nanomolar Potent and Selective Antagonist of Group II Metabotropic Glutamate Receptors.Neuropharmacology. 1998;37(1):1-12.

Additional Infomation
The treatment of neuropathic pain remains a clinical challenge because of its unclear mechanisms and broad clinical morbidity. Matrix metalloproteinase (MMP)-9 and MMP-2 have previously been described as key components in neuropathic pain because of their facilitation of inflammatory cytokine maturation and induction of neural inflammation. Therefore, the inhibition of MMPs may represent a novel therapeutic approach to the treatment of neuropathic pain. In this study, we report that N-acetyl-cysteine (NAC), which is a broadly used respiratory drug, significantly attenuates neuropathic pain through a unique mechanism of MMP inhibition. Both the in vitro (0.1 mM) and in vivo application of NAC significantly suppressed the activity of MMP-9/2. Orally administered NAC (50, 100, and 200 mg/kg) not only postponed the occurrence but also inhibited the maintenance of chronic constrictive injury (CCI)-induced neuropathic pain in rats. The administration of NAC blocked the maturation of interleukin-1β, which is a critical substrate of MMPs, and markedly suppressed the neuronal activation induced by CCI, including inhibiting the phosphorylation of protein kinase Cγ, NMDAR1, and mitogen-activated protein kinases. Finally, NAC significantly inhibited CCI-induced microglia activation but elicited no notable effects on astrocytes. These results demonstrate an effective and safe approach that has been used clinically to alleviate neuropathic pain through the powerful inhibition of the activation of MMPs.[4]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H19NO5
Molecular Weight
353.37
Exact Mass
353.126
Elemental Analysis
C, 67.98; H, 5.42; N, 3.96; O, 22.64
Related CAS #
LY341495;201943-63-7
PubChem CID
10713043
Appearance
White to off-white solid powder
LogP
-0.2
InChi Key
VLZBRVJVCCNPRJ-ZOSMMGSXSA-N
InChi Code
InChI=1S/C20H19NO5/c21-20(19(24)25,15-9-13(15)18(22)23)10-14-11-5-1-3-7-16(11)26-17-8-4-2-6-12(14)17/h1-8,13-15H,9-10,21H2,(H,22,23)(H,24,25)/t13-,15-,20?/m0/s1
Chemical Name
(1S,2S)-2-[1-amino-1-carboxy-2-(9H-xanthen-9-yl)ethyl]cyclopropane-1-carboxylic acid
Synonyms
(Rac)-LY341495; LY 341495; SCHEMBL24606222;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8299 mL 14.1495 mL 28.2990 mL
5 mM 0.5660 mL 2.8299 mL 5.6598 mL
10 mM 0.2830 mL 1.4149 mL 2.8299 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us