Size | Price | |
---|---|---|
Other Sizes |
ln Vitro |
In research pertaining to life sciences, sodium, or lauroylsarcosine, is a biochemical reagent that can be utilized as an organic compound or biological substance.
|
---|---|
ADME/Pharmacokinetics |
Metabolism / Metabolites
Acyl sarcosines can be absorbed following oral or dermal contact, while nitrosamines can enter the body via ingestion, inhalation, or dermal contact. Once in the body, nitrosamines are metabolized by cytochrome P-450 enzymes, which essentially activates them into carcinogens. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase. (A2878, A2879, L1892) |
Toxicity/Toxicokinetics |
Toxicity Summary
While acyl sarcosines themselves are not toxic, they are nitrosating agents. Nitrosating agents may decompose and/or react to cause nitrosamine contamination. Nitrosamines are produced from secondary amines and amides in the presence of nitrite ions and are believed to be carcinogenic. The particular nitrosamine produced by acyl sarcosines is N-nitrososarcosine. Once in the body, nitrosamines are activated by cytochrome P-450 enzymes. They are then believed to induce their carcinogenic effects by forming DNA adducts at the N- and O-atoms. (L1889, L1890, A2878, A2879, A2880, A2881) Toxicity Data LC50 (rat) = 50-500 mg/m3/4hr LD50: 175 mg/kg (Intravenous, Rat) (A2881) LD50: 2.1 g/kg (Oral, Mouse) (A2881) |
Additional Infomation |
Sodium lauroyl sarcosinate is an sodium salt of an acyl derivative of sarcosine, which is a natural amino acid found in muscles and other body tissues. Acyl sarcosines are considered modifiŽed fatty acids in which the hydrocarbon chains are interrupted by an amidomethyl group in the alpha position. They are used as hair-conditioning agents and surfactant-cleansing agents in cosmetics, as well as to improve wetting and penetration of topical pharmaceutical products. Acyl sarcosines and their sodium salts are also used in the metal finishing and processing industries for their crystal modifying, anti-rust, and anti-corrosion properties. (L1892, A2881)
|
Molecular Formula |
C15H28NNAO3
|
---|---|
Molecular Weight |
293.38
|
Exact Mass |
293.196
|
CAS # |
137-16-6
|
PubChem CID |
23668817
|
Appearance |
White to off-white solid powder
|
Density |
1.033 g/mL at 20 °C
|
Boiling Point |
100ºC
|
Melting Point |
46 °C
|
LogP |
2.115
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
12
|
Heavy Atom Count |
20
|
Complexity |
260
|
Defined Atom Stereocenter Count |
0
|
SMILES |
[Na+].O=C(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])N(C([H])([H])[H])C([H])([H])C(=O)[O-]
|
InChi Key |
KSAVQLQVUXSOCR-UHFFFAOYSA-M
|
InChi Code |
InChI=1S/C15H29NO3.Na/c1-3-4-5-6-7-8-9-10-11-12-14(17)16(2)13-15(18)19;/h3-13H2,1-2H3,(H,18,19);/q;+1/p-1
|
Chemical Name |
sodium;2-[dodecanoyl(methyl)amino]acetate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O: 50 mg/mL (170.43 mM)
DMSO: 5 mg/mL (17.04 mM) |
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.4085 mL | 17.0427 mL | 34.0855 mL | |
5 mM | 0.6817 mL | 3.4085 mL | 6.8171 mL | |
10 mM | 0.3409 mL | 1.7043 mL | 3.4085 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.