Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
Fluorescent Dye
|
---|---|
ln Vitro |
Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer [2].
|
References |
|
Additional Infomation |
The precision of single-molecule localization-based super-resolution microscopy, including dSTORM, critically depends on the number of detected photons per localization. Recently, reductive caging of fluorescent dyes followed by UV-induced recovery in oxidative buffer systems was used to increase the photon yield and thereby the localization precision in single-color dSTORM. By screening 39 dyes for their fluorescence caging and recovery kinetics, we identify novel dyes that are suitable for multicolor caged dSTORM. Using a dye pair suited for registration error-free multicolor dSTORM based on spectral demixing (SD), a multicolor localization precision below 15 nm was achieved. Caged SD-dSTORM can resolve the ultrastructure of single 40 nm synaptic vesicles in brain sections similar to images obtained by immuno-electron microscopy, yet with much improved label density in two independent channels.[1]
|
Molecular Formula |
C39H47N3O16S4
|
---|---|
Molecular Weight |
942.06
|
Exact Mass |
941.183
|
CAS # |
1620475-28-6
|
PubChem CID |
167996453
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
1.8
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
17
|
Rotatable Bond Count |
19
|
Heavy Atom Count |
62
|
Complexity |
2270
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CC1(C2=C(C=CC(=C2)S(=O)(=O)O)[N+](=C1/C=C/C=C/C=C\3/C(C4=C(N3CCCS(=O)(=O)[O-])C=CC(=C4)S(=O)(=O)O)(C)CCCCC(=O)ON5C(=O)CCC5=O)CCCS(=O)(=O)O)C
|
InChi Key |
WTYBXOVGGRVXPB-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C39H47N3O16S4/c1-38(2)29-25-27(61(52,53)54)14-16-31(29)40(21-9-23-59(46,47)48)33(38)11-5-4-6-12-34-39(3,20-8-7-13-37(45)58-42-35(43)18-19-36(42)44)30-26-28(62(55,56)57)15-17-32(30)41(34)22-10-24-60(49,50)51/h4-6,11-12,14-17,25-26H,7-10,13,18-24H2,1-3H3,(H3-,46,47,48,49,50,51,52,53,54,55,56,57)
|
Chemical Name |
3-[(2Z)-2-[(2E,4E)-5-[3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)indol-1-ium-2-yl]penta-2,4-dienylidene]-3-[5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentyl]-3-methyl-5-sulfoindol-1-yl]propane-1-sulfonate
|
Synonyms |
Alexa Fluor 647 NHS Ester; AF 647 NHS Ester; 1620475-28-6; HY-D2096; CS-0897477; 3-(2-(5-(3,3-Dimethyl-5-sulfo-1-(3-sulfopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3-(5-((2,5-dioxopyrrolidin-1-yl)oxy)-5-oxopentyl)-3-methyl-5-sulfo-3H-indol-1-ium-1-yl)propane-1-sulfonate; 3-[(2Z)-2-[(2E,4E)-5-[3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)indol-1-ium-2-yl]penta-2,4-dienylidene]-3-[5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentyl]-3-methyl-5-sulfoindol-1-yl]propane-1-sulfonate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.0615 mL | 5.3075 mL | 10.6150 mL | |
5 mM | 0.2123 mL | 1.0615 mL | 2.1230 mL | |
10 mM | 0.1062 mL | 0.5308 mL | 1.0615 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.