Size | Price | |
---|---|---|
Other Sizes |
ADME/Pharmacokinetics |
Metabolism / Metabolites
Copper is mainly absorbed through the gastrointestinal tract, but it can also be inhalated and absorbed dermally. It passes through the basolateral membrane, possibly via regulatory copper transporters, and is transported to the liver and kidney bound to serum albumin. The liver is the critical organ for copper homoeostasis. In the liver and other tissues, copper is stored bound to metallothionein, amino acids, and in association with copper-dependent enzymes, then partitioned for excretion through the bile or incorporation into intra- and extracellular proteins. The transport of copper to the peripheral tissues is accomplished through the plasma attached to serum albumin, ceruloplasmin or low-molecular-weight complexes. Copper may induce the production of metallothionein and ceruloplasmin. The membrane-bound copper transporting adenosine triphosphatase (Cu-ATPase) transports copper ions into and out of cells. Physiologically normal levels of copper in the body are held constant by alterations in the rate and amount of copper absorption, compartmental distribution, and excretion. (L277, L279) |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
Excess copper is sequestered within hepatocyte lysosomes, where it is complexed with metallothionein. Copper hepatotoxicity is believed to occur when the lysosomes become saturated and copper accumulates in the nucleus, causing nuclear damage. This damage is possibly a result of oxidative damage, including lipid peroxidation. Copper inhibits the sulfhydryl group enzymes such as glucose-6-phosphate 1-dehydrogenase, glutathione reductase, and paraoxonases, which protect the cell from free oxygen radicals. It also influences gene expression and is a co-factor for oxidative enzymes such as cytochrome C oxidase and lysyl oxidase. In addition, the oxidative stress induced by copper is thought to activate acid sphingomyelinase, which lead to the production of ceramide, an apoptotic signal, as well as cause hemolytic anemia. Copper-induced emesis results from stimulation of the vagus nerve. (L277, T49, A174, L280) Toxicity Data LD50: 1710 mg/kg (Oral, Rat) (L332) |
References | |
Additional Infomation |
Copper gluconate is an organic molecular entity.
Copper gluconate is a copper salt of D-gluconic acid that displays a light blue to bluish-green color. It is prepared by the reaction of gluconic acid solutions with cupric oxide or basic cupric carbonate. According to the good manufacturing or feeding practice by the FDA, copper gluconate is used as a nutrient or dietary supplement and is generally recognized as safe for use at a level not exceeding 0.005 percent. Copper Gluconate is the orally bioavailable copper salt of D-gluconic acid. In addition to its roles as an enzyme cofactor for cytochrome C oxidase and superoxide dismutase, copper forms complexes with the thiocarbamate disulfiram (DSF) forming DSF-copper complexes, which enhances the DSF-mediated inhibition of the 26S proteasome; proteasome inhibition may result in inhibition of cellular protein degradation, cessation of cell cycle progression, inhibition of cellular proliferation, and the induction of apoptosis in susceptible tumor cell populations. Copper gluconate is the copper salt of D-gluconic acid. It is used in dietary supplements and to treat conditions such as acne vulgaris, common cold, hypertension, premature labor, Leishmaniasis, visceral postoperative complications. Copper is a chemical element with the symbol Cu and atomic number 29. Copper is an essential elements in plants and animals as it is required for the normal functioning of more than 30 enzymes. It occurs naturally throughout the environment in rocks, soil, water, and air. (L277, L278, L286) Derivatives of gluconic acid (the structural formula HOCH2(CHOH)4COOH), including its salts and esters. See also: Copper (has active moiety); Cupric Cation (has active moiety) ... View More ... |
Molecular Formula |
C12H22CUO14
|
---|---|
Molecular Weight |
453.84
|
Exact Mass |
453.03
|
CAS # |
527-09-3
|
PubChem CID |
10692
|
Appearance |
Light blue to blue solid powder
|
Boiling Point |
673.6ºC at 760 mmHg
|
Melting Point |
155-157ºC
|
Flash Point |
375.2ºC
|
Index of Refraction |
16.5 ° (C=1, H2O)
|
Hydrogen Bond Donor Count |
10
|
Hydrogen Bond Acceptor Count |
14
|
Rotatable Bond Count |
8
|
Heavy Atom Count |
27
|
Complexity |
165
|
Defined Atom Stereocenter Count |
8
|
SMILES |
C([C@H]([C@H]([C@@H]([C@H](C(=O)[O-])O)O)O)O)O.C([C@H]([C@H]([C@@H]([C@H](C(=O)[O-])O)O)O)O)O.[Cu+2]
|
InChi Key |
OCUCCJIRFHNWBP-IYEMJOQQSA-L
|
InChi Code |
InChI=1S/2C6H12O7.Cu/c2*7-1-2(8)3(9)4(10)5(11)6(12)13;/h2*2-5,7-11H,1H2,(H,12,13);/q;;+2/p-2/t2*2-,3-,4+,5-;/m11./s1
|
Chemical Name |
copper;(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: (1). This product requires protection from light (avoid light exposure) during transportation and storage. (2). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 25 mg/mL (55.09 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2034 mL | 11.0171 mL | 22.0342 mL | |
5 mM | 0.4407 mL | 2.2034 mL | 4.4068 mL | |
10 mM | 0.2203 mL | 1.1017 mL | 2.2034 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.