yingweiwo

Chlorimuron-ethyl

Cat No.:V62114 Purity: ≥98%
Chlorimuron-ethyl induces oxidative stress.
Chlorimuron-ethyl
Chlorimuron-ethyl Chemical Structure CAS No.: 90982-32-4
Product category: Others 12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Chlorimuron-ethyl induces oxidative stress. Chlorimuron-ethyl is an important herbicide extensively used in soybean growth.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
Treatment with chlorimuron-ethyl (30 mg/kg) significantly damages CHL accumulation[1].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The compound /chlorimuron-ethyl/ is absorbed from the gastrointestinal tract and is eliminated equally in urine and feces with a biological half-life of about 50 hours. Chlorimuron-ethyl is distributed throughout the body, with the largest portions found in the liver.
Metabolism / Metabolites
Chlorimuron-ethyl was ...extensively metabolized by both male and female rats at the low and high dose. Excretion was monitored up to 168 hrs and the elimination of radioactivity was equal via the urine and feces for the low and high dose. The half-life is 50 hrs. /Five/... major metabolites .../were found/.
(14)C Chlorimuron ethyl was readily absorbed by the roots of young intact corn seedlings and through the cut ends of excised leaves, but it was not readily absorbed by intact leaves. Under the conditions employed, (14)C-chlorimuron ethyl was metabolized at a moderate rate in both intact roots and excised leaves (ca 2.4 nmol/g fresh weight tissue/hr). Based upon HPLC analysis, (14)C-chlorimuron ethyl appeared to be metabolized by similar routes in both the roots and leaves. (14)C Chlorimuron ethyl and 10 radioactive metabolites were detected in the roots of corn 7 hr following herbicide treatment. (14)C-Chlorimuron ethyl and the following metabolites, listed in approximate order of their abundance, were isolated and characterized: chlorimuron ethyl (N-(4-chloro-6-methoxypyrimidine-2-yl)-N'-(2-ethoxycarbonylbenzene-sulfonyl)urea; N-(4-chloro-5-hydroxy-6-methoxypyrimidine-2-yl)-N'-(2-ethoxy carbonylbenzenesulfonyl)urea, 2-ethoxycarbonylbenzene sulfonamide, N-(4-(S-glutathionyl)-6-methoxypyrimidine-2-yl)-N'-(2-etho xycarbonyl benzenesulfonyl)urea, N-(4-(S-glutathionyl)-5-hydroxy-6-methoxypyrimidine-2-yl)- N'-(2- ethoxycarbonylbenzenesulfonyl)urea, N-(4-chloro-5-(O-beta-D-glucosyl)-6-methoxypyrimidine-2-yl)-N'ethoxy carbonylbenzenesulfonyl)urea, and N-(4-(S-cysteinyl)-6-methoxypyrimidine-2-yl)-N'-(2-ethoxycarbonyl- benzenesulfonyl)urea. Chlorimuron ethyl and these metabolites were purified by HPLC and were characterized by fast atom bombardment mass spectrometry. In addition to fast atom bombardment mass spectrometry, the following methods were used in the characterization of some metabolites: synthesis, hydrolysis with beta-glucosidase, analysis of hydrolysis products, electron impact MS, and proton nuclear magnetic resonance (400 MH).
Biological Half-Life
About 50 hours
Toxicity/Toxicokinetics
Toxicity Data
LC50 (rat) > 5,000 mg/m3/4h
Interactions
BAS 145 138 protected corn from injury due to low levels of chlorimuron ethyl. Inhibition of root growth was used to monitor injury. BAS 145 138 did not affect uptake, but it caused a two fold increase in the rate of chlorimuron ethyl metabolism in corn roots and shoots. The increase in chlorimuron ethyl metabolism was correlated positively to growth. Routes of metabolism that were accelerated in response to BAS 145 138 included hydroxylation of chlorimuron ethyl at the 5-position of the pyrimidine ring, the formation of the corresponding glucoside, the formation of two glutathione conjugates, and the formation of two unidentified metabolites. The most dramatic of the effects was on the formation of the glucoside of 5-hydroxychlorimuron ethyl. In the roots, the level of this metabolite was increased six fold in response to BAS 145 138. Part of this increase was due to an elevation in the in vivo rate of glucosylation of 5-hydroxychlorimuron ethyl. BAS 145 138 did not alter the qualitative routes of chlorimuron ethyl metabolism, nor did it appear to affect the levels or catalytic properties of acetolactate synthase, the target enzyme of chlorimuron ethyl. 5-Hydroxychlorimuron ethyl was 152 times less effective as an inhibitor of acetolactate synthase than chlorimuron ethyl. The glucoside of 5-hydroxychlorimuron ethyl was hydrolyzed during the acetolactate synthase assay; therefore, an I50 value for this metabolite was not obtained.
Non-Human Toxicity Values
LC50 Rat inhalation >5 mg/L/4 hr
LD50 Rabbit dermal > 2000 mg/kg
LD50 Rat oral >5000 mg/kg
References

[1]. Effects of Herbicide Chlorimuron-Ethyl on Physiological Mechanisms in Wheat (Triticum Aestivum). Ecotoxicol Environ Saf. 2006 Jun;64(2):190-7.

Additional Infomation
Chlorimuron ethyl appears as colorless crystals. Used as an herbicide.
Chlorimuron-ethyl is an ethyl ester resulting from the formal condensation of the carboxy group of chlorimuron with ethanol. A proherbicide for chloimuron, it is used as herbicide for the control of broad-leaved weeds in peanuts, soya beans, and other crops. It has a role as a proherbicide, an EC 2.2.1.6 (acetolactate synthase) inhibitor and an agrochemical. It is a sulfamoylbenzoate, a N-sulfonylurea, an aromatic ether, an ethyl ester, an organochlorine pesticide and a member of pyrimidines. It is functionally related to a chlorimuron. It is a conjugate acid of a chlorimuron-ethyl(1-).
Mechanism of Action
Sulfonylurea class herbicide that inhibits acetolactate synthase, which regulates plant growth.
Branched chain amino acid synthesis (ASL or AHAS) inhibitor. Acts by inhibiting biosynthesis of the essential amino acids valine and isoleucine, hence stopping cell division and plant growth. Crop selectivity derives from plant metabolism both by homoglutathione conjugation and by de-esterification.
...Acetolactate synthase /is/ the target enzyme of chlorimuron ethyl.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H15CLN4O6S
Molecular Weight
414.82
Exact Mass
414.04
CAS #
90982-32-4
PubChem CID
56160
Appearance
Crystals from butyl chloride
White solid
Colorless crystals
Density
1.493 g/cm3
Melting Point
180-182°C
Index of Refraction
1.598
LogP
3.37
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
7
Heavy Atom Count
27
Complexity
628
Defined Atom Stereocenter Count
0
SMILES
O=C(C1C(S(NC(NC2N=C(OC)C=C(Cl)N=2)=O)(=O)=O)=CC=CC=1)OCC
InChi Key
NSWAMPCUPHPTTC-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H15ClN4O6S/c1-3-26-13(21)9-6-4-5-7-10(9)27(23,24)20-15(22)19-14-17-11(16)8-12(18-14)25-2/h4-8H,3H2,1-2H3,(H2,17,18,19,20,22)
Chemical Name
ethyl 2-[(4-chloro-6-methoxypyrimidin-2-yl)carbamoylsulfamoyl]benzoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 250 mg/mL (602.67 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4107 mL 12.0534 mL 24.1068 mL
5 mM 0.4821 mL 2.4107 mL 4.8214 mL
10 mM 0.2411 mL 1.2053 mL 2.4107 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us