Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ADME/Pharmacokinetics |
Metabolism / Metabolites
The biotransformation of territrems involves hydroxylation and 0-demethylation. Metabolism is performed by cytochrome P-450 monooxygenases in the liver, with CYP3A4 and CYP3A5 being the major enzymes used. (A3028, A3030) |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
Territrem A is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. |
References | |
Additional Infomation |
Territrem A is a tremorgenic mycotoxin found in the fungus Aspergillus terreus, which has been know to contaminate rice crops. Tremorgenic mycotoxins affect central nervous system activity, with their defining characteristic being the tremors that they cause. Territrems induce this effect by inhibiting the enzyme acetylcholinesterase in peripheral nerve endings. (A3028, A3029)
|
Molecular Formula |
C28H30O9
|
---|---|
Exact Mass |
510.189
|
CAS # |
70407-19-1
|
PubChem CID |
115079
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.44g/cm3
|
Boiling Point |
695ºC at 760 mmHg
|
Flash Point |
232ºC
|
Index of Refraction |
1.654
|
LogP |
3.165
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
37
|
Complexity |
1150
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O1C2C([H])=C(C3C([H])=C(C4=C(C=3[H])OC([H])([H])O4)OC([H])([H])[H])OC(C=2C([H])([H])C2(C1(C([H])([H])[H])C([H])([H])C([H])([H])C1(C(C([H])([H])[H])(C([H])([H])[H])C([H])=C([H])C(C12C([H])([H])[H])=O)O[H])O[H])=O
|
InChi Key |
LCJHAHVVYAVVPA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C28H30O9/c1-24(2)7-6-21(29)26(4)27(24,31)9-8-25(3)28(26,32)13-16-18(37-25)12-17(36-23(16)30)15-10-19(33-5)22-20(11-15)34-14-35-22/h6-7,10-12,31-32H,8-9,13-14H2,1-5H3
|
Chemical Name |
1,7-dihydroxy-14-(7-methoxy-1,3-benzodioxol-5-yl)-2,6,6,10-tetramethyl-11,15-dioxatetracyclo[8.8.0.02,7.012,17]octadeca-4,12(17),13-triene-3,16-dione
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.