yingweiwo

(-)-Camphor ((-)-camphor)

Cat No.:V59893 Purity: ≥98%
(-)-Camphor is a naturally occurring compound extracted from A.
(-)-Camphor ((-)-camphor)
(-)-Camphor ((-)-camphor) Chemical Structure CAS No.: 464-48-2
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
(-)-Camphor is a naturally occurring compound extracted from A. rnexicana.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Absorption of camphor in the mucous membranes and the gastrointestinal tract is rapid, and peak concentration following oral ingestion occurs within 5 to 90 minutes.
Camphor undergoes renal excretion.
Volume of distribution of camphor is 2 to 4 L/kg. Camphor and its metabolites are relatively fat-soluble thus may accumulate in adipose and other tissues. Camphor ingested by mothers was present in amnionic fluid, cord and fetal blood and fetal brain, liver and kidneys.
No pharmacokinetic data available.
Metabolism / Metabolites
(S)-camphor undergoes rapid oxidation to 5-exo-hydroxyfenchone, which is predominantly mediated by human liver microsomal cytochrome (P450). CYP2A6 is the major enzyme involved in the hydroxylation of (-)-camphor by human liver microsomes.
Biological Half-Life
Following oral ingestion of 200 mg camphor, the half life was 167 minutes.
Toxicity/Toxicokinetics
Protein Binding
No pharmacokinetic data available.
References

[1]. Manjarrez A, Medina F. The analysis of the volatile oils of the leaves of Artemisia mexicana and Artemisia klotzchiana. Canadian Journal of Chemistry, 1964, 42(9): 2085-2088.

Additional Infomation
L-camphor appears as colorless or white crystals. Fragrant and penetrating odor. Slightly bitter and cooling taste. Odor index at 68 °F: 40. Flash point 149 °F. Burns with a bright, smoky flame. Sublimes appreciably at room temperature and pressure; 14% sublimes within 60 minutes at 176 °F and 12 mmHg. (NTP, 1992)
(S)-camphor is the S-enantiomer of camphor. It is an enantiomer of a (R)-camphor.
(S)-camphor, or L(-)-Camphor, is a stereoisomer of [DB01744], a bicyclic monoterpene known to potentiate both heat and cold sensations. (S)-camphor is not the naturally-occurring stereoisomer but displays similar TRPV channel affinity and current inhibition. [DB01744] is isolated from the wood of the camphor laurel tree, Cinnamomum camphora, and had a long history of medicinal use. It has been used as a nasal decongestant and cough suppressant, and has been topically applied due to its antipruritic, analgesic, and counterirritant properties. Camphor is a major active ingredient in over-the-counter balms and liniments supplied as topical analgesics by causing sensitization to heat and coolness to relieve minor muscle and joint pain.
(-)-Camphor has been reported in Salvia officinalis, Thymus camphoratus, and other organisms with data available.
Drug Indication
Indicated for the temporary symptomatic relief of minor aches and pains of muscles and joints in topical analgesics.
Mechanism of Action
TRPV3 cation channels are molecular sensors that play a role in nociception and thermosensation by inducing thermal sensation and heat-induced hyperalgesia. Camphor interacts with TRPV3 channels via pore-region cysteine residues, leading to channel activation and a rise in intracellular calcium levels. Camphor also activates TRPV1 and a TRPV1-like current in dorsal root ganglion (DRG) neurons but inhibits the ankyrin-repeat TRP 1 (TRPA1) channel expressed in most nociceptive DRG neurons, which is responsible for the detection of temperature. The precise role of TRPA1 current inhibition on the analgesic properties of camphor is unclear. Repeated stimulation by camphor leads to sensitization of the TRPV1 and TRPV3 channels, resulting in desensitization, or reduced channel response that likely leads to the analgesic effects of camphor. Camphor also activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) and sensitizes cold-induced calcium transients, which explains the cooling effect of camphor following dermal application. Additionally, camphor was shown to inhibit the TRPM8 receptor response to menthol.
Pharmacodynamics
Camphor exerts an analgesic action when applied topically by producing a warm sensation. It excites and desensitizes sensory nerves by activating heat-sensitive TRP vanilloid subtype 1 (TRPV1) and TRPV3 receptors. (S)-camphor is reported to exert a weaker action on TRPV1 channels, which is thought to be a result of tachyphylaxis, which is the reduction of the response to multiple stimulations.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H16O
Molecular Weight
152.24
Exact Mass
152.12
CAS #
464-48-2
PubChem CID
444294
Appearance
Typically exists as solid at room temperature
Density
1.0±0.1 g/cm3
Boiling Point
207.4±0.0 °C at 760 mmHg
Melting Point
178-180ºC
Flash Point
64.4±0.0 °C
Vapour Pressure
0.2±0.4 mmHg at 25°C
Index of Refraction
1.485
LogP
2.13
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
0
Heavy Atom Count
11
Complexity
217
Defined Atom Stereocenter Count
2
SMILES
O=C1C([H])([H])C2([H])C([H])([H])C([H])([H])C1(C([H])([H])[H])C2(C([H])([H])[H])C([H])([H])[H]
InChi Key
DSSYKIVIOFKYAU-OIBJUYFYSA-N
InChi Code
InChI=1S/C10H16O/c1-9(2)7-4-5-10(9,3)8(11)6-7/h7H,4-6H2,1-3H3/t7-,10+/m0/s1
Chemical Name
(1S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.5686 mL 32.8429 mL 65.6858 mL
5 mM 1.3137 mL 6.5686 mL 13.1372 mL
10 mM 0.6569 mL 3.2843 mL 6.5686 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us