yingweiwo

Fibronectin Type III Connecting Segment Fragment 1-25

Alias: 107978-77-8; CS1 Peptide; CS-1 fibronectin; Connecting segment 1 fibronectin; Fibronectin connecting segment 1; L-Threonine, L-alpha-aspartyl-L-alpha-glutamyl-L-leucyl-L-prolyl-L-glutaminyl-L-leucyl-L-valyl-L-threonyl-L-leucyl-L-prolyl-L-histidyl-L-prolyl-L-asparaginyl-L-leucyl-L-histidylglycyl-L-prolyl-L-alpha-glutamyl-L-isoleucyl-L-leucyl-L-alpha-aspartyl-L-valyl-L-prolyl-L-seryl-;
Cat No.:V59745 Purity: ≥98%
Fibronectin Type III Connecting Segment Fragment 1-25 is a bioactive peptide responsible for melanoma cell adhesion and plays an important role in the development of the chicken peripheral nervous system.
Fibronectin Type III Connecting Segment Fragment 1-25
Fibronectin Type III Connecting Segment Fragment 1-25 Chemical Structure CAS No.: 107978-77-8
Product category: Peptides
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Fibronectin Type III Connecting Segment Fragment 1-25 is a bioactive peptide responsible for melanoma cell adhesion and plays an important role in the development of the chicken peripheral nervous system.
Biological Activity I Assay Protocols (From Reference)
Targets
Cell adhesion
ln Vitro
Fibronectin contains at least two major domains that support cell adhesion. One is the central cell-binding domain that is recognized by a variety of cell types via the integrin alpha 5 beta 1. The second, originally identified by its ability to support melanoma cell adhesion, is located in the alternatively spliced type III connecting segment (IIICS). A dominant cell type-specific adhesion site within the IIICS has been localized to a peptide designated as CS1 comprising its amino-terminal 25 residues. The receptor for CS1 is the integrin alpha 4 beta 1. We have synthesized a variety of peptides with overlapping sequences in order to identify the minimum active amino acid sequence of this major cell adhesion site. A peptide comprising the carboxyl-terminal 8 amino acids of CS1, EILDVPST, was found to support melanoma cell spreading, while all peptides without this sequence had little or no activity. Two smaller overlapping pentapeptides, EILDV and LDVPS, were also active, whereas EILEV, containing a conservative substitution of Glu for Asp, was inactive. These data suggested that the minimum sequence for cell adhesion activity is Leu-Asp-Val, the tripeptide sequence common to both active peptides. This prediction was confirmed by the observed ability of the Leu-Asp-Val peptide itself to block spreading on fibronectin, whereas Leu-Glu-Val was inactive. Interspecies amino acid sequence comparison also supports the importance of the LDV sequence, since it is completely conserved in the IIICS regions of human, rat, bovine, and avian fibronectins.[1]
Fibronectin contains at least two domains that support cell adhesion. One is the central cell-binding domain that is recognized by a variety of cell types, including fibroblasts. The second, originally identified by its ability to support melanoma cell adhesion, is located in the alternatively spliced type III connecting segment (IIICS). Using specific adhesive ligands and inhibitory probes, we have examined the role of each of these domains in fibronectin-mediated neurite extension of neurons from chick embryo dorsal root and sympathetic ganglia. In studies using explanted ganglia, both fl3, a 75-kD tryptic fragment of human plasma fibronectin containing the central cell-binding domain, and CS1-IgG, a synthetic peptide-IgG conjugate containing the principal cell adhesion site from the IIICS, supported neurite outgrowth after adsorption onto the substrate. The maximal activities of fl3 and CSl-IgG were 45-55% and 25-30% that of intact fibronectin, respectively. Co-coating of the substrate with f13 and CS1-IgG produced an additive stimulation of neurite outgrowth, the extent of which approached that obtained with fibronectin. Similar results were obtained with purified neuronal cell preparations isolated by tryptic dissociation of dorsal root ganglia. In complementary studies, blockage of the adhesive function of either the central cell-binding domain (with mAb 333, an antiadhesive monoclonal antibody) or the IIICS (with CS1 peptide), resulted in approximately 60 or 30% reduction in fibronectin-mediated neurite outgrowth, respectively. When tested in combination, the inhibitory activities of mAb 333 and CSl were additive. From these results, we conclude that neurons from the peripheral nervous system can extend neurites on both the central cell-binding domain and the IIICS region of fibronectin, and that these cells are therefore the first normal, embryonic cell type shown to adhere to the IIICS. These results suggest that spatiotemporal fluctuations in the alternative mRNA splicing of the IIICS region of fibronectin may be important in regulation of cell adhesive events during development of the peripheral nervous system [2].
References
[1]. The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem. 1991 Aug 15;266(23):15075-9.
[2]. Neurite extension of chicken peripheral nervous system neurons on fibronectin: relative importance of specific adhesion sites in the central cell-binding domain and the alternatively spliced type III connecting segment. J Cell Biol. 1988 Apr;106(4):1289-97.
Additional Infomation
Parenthetically, the observed activity of CS1-A relative to that of CS1 in the cell-spreading promotion assay was much less than its biological activity in the cell-spreading inhibition assay (compare Figs. 3 and 4A). This apparent discrepancy may be due to the fact that the peptide is conjugated to IgG through the side chain of the added amino-terminal cysteine residue for the cell-spreading promotion assay, and the free CS1-A peptide was used in the cell-spreading inhibition assay. The biologically important residues are located spatially closer to the IgG carrier protein for CS1-A as compared with the other CS1 subpeptides. Hence, potential steric hindrance by the IgG molecule may partially interfere with the interaction between the CS1-A peptide and its receptor, the integrin a4pl complex. The minimal LDV sequence we have identified as essential for the recognition of fibronectin by the a4& integrin receptor compares with the RGD sequence necessary for recognition by several other integrin receptors including a&, a,& all&, and others (15-17). Both peptides contain an aspartyl residue, but they appear otherwise unrelated. In addition, the other minimal sequence from the human fibronectin IIICS region is REDV (l), which may be related either to LDV (both have DV) or to RGDS (the rat homologue is RGDV (18)). The use of these short recognition sequences by cells for fibronectinmediated functions suggests a common pattern of local peptide sequence recognition by specific integrin receptors. Whether the aspartyl residue in each of these peptide sequences constitutes part of an underlying mechanism of receptor recognition remains to be determined. [1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C123H195N31O39
Molecular Weight
2732.05
Exact Mass
2730.42
CAS #
107978-77-8
PubChem CID
16131087
Sequence
H-Asp-Glu-Leu-Pro-Gln-Leu-Val-Thr-Leu-Pro-His-Pro-Asn-Leu-His-Gly-Pro-Glu-Ile-Leu-Asp-Val-Pro-Ser-Thr-OH; Asp-Glu-Leu-Pro-Gln-Leu-Val-Thr-Leu-Pro-His-Pro-Asn-Leu-His-Gly-Pro-Glu-Ile-Leu-Asp-Val-Pro-Ser-Thr; L-alpha-aspartyl-L-alpha-glutamyl-L-leucyl-L-prolyl-L-glutaminyl-L-leucyl-L-valyl-L-threonyl-L-leucyl-L-prolyl-L-histidyl-L-prolyl-L-asparagyl-L-leucyl-L-histidyl-glycyl-L-prolyl-L-alpha-glutamyl-L-isoleucyl-L-leucyl-L-alpha-aspartyl-L-valyl-L-prolyl-L-seryl-L-threonine
SequenceShortening
DELPQLVTLPHPNLHGPEILDVPST; H-DELPQLVTLPHPNLHGPEILDVPST-OH
Appearance
Typically exists as solid at room temperature
LogP
0.507
Hydrogen Bond Donor Count
32
Hydrogen Bond Acceptor Count
42
Rotatable Bond Count
80
Heavy Atom Count
193
Complexity
6430
Defined Atom Stereocenter Count
27
SMILES
OC(CCC(C(NC(C(N1CCCC1C(NC(C(NC(C(NC(C(NC(C(NC(C(N1CCCC1C(NC(C(N1CCCC1C(NC(C(NC(C(NC(C(NCC(N1CCCC1C(NC(C(NC(C(NC(C(NC(C(NC(C(N1CCCC1C(NC(C(NC(C(=O)O)C(O)C)=O)CO)=O)=O)C(C)C)=O)CC(=O)O)=O)CC(C)C)=O)C(CC)C)=O)CCC(=O)O)=O)=O)=O)CC1=CN=CN1)=O)CC(C)C)=O)CC(=O)N)=O)=O)CC1=CN=CN1)=O)=O)CC(C)C)=O)C(O)C)=O)C(C)C)=O)CC(C)C)=O)CCC(=O)N)=O)=O)CC(C)C)=O)NC(C(CC(=O)O)N)=O)=O
InChi Key
NXAKDBCNODQXBZ-YSZCVPRFSA-N
InChi Code
InChI=1S/C123H195N31O39/c1-19-64(16)97(117(186)140-74(42-58(4)5)106(175)138-78(50-94(167)168)109(178)146-96(63(14)15)122(191)154-40-24-29-87(154)115(184)144-82(54-155)110(179)149-99(66(18)157)123(192)193)147-104(173)72(32-35-92(163)164)134-111(180)83-25-20-36-150(83)90(160)53-129-101(170)76(46-67-51-127-55-130-67)137-105(174)73(41-57(2)3)136-107(176)77(49-89(126)159)139-113(182)85-27-22-39-153(85)121(190)81(47-68-52-128-56-131-68)142-114(183)86-28-23-38-152(86)120(189)80(45-61(10)11)143-118(187)98(65(17)156)148-116(185)95(62(12)13)145-108(177)75(43-59(6)7)135-102(171)70(30-33-88(125)158)133-112(181)84-26-21-37-151(84)119(188)79(44-60(8)9)141-103(172)71(31-34-91(161)162)132-100(169)69(124)48-93(165)166/h51-52,55-66,69-87,95-99,155-157H,19-50,53-54,124H2,1-18H3,(H2,125,158)(H2,126,159)(H,127,130)(H,128,131)(H,129,170)(H,132,169)(H,133,181)(H,134,180)(H,135,171)(H,136,176)(H,137,174)(H,138,175)(H,139,182)(H,140,186)(H,141,172)(H,142,183)(H,143,187)(H,144,184)(H,145,177)(H,146,178)(H,147,173)(H,148,185)(H,149,179)(H,161,162)(H,163,164)(H,165,166)(H,167,168)(H,192,193)/t64-,65+,66+,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,95-,96-,97-,98-,99-/m0/s1
Chemical Name
(4S)-4-[[(2S)-1-[2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-4-methylpentanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxybutanoyl]amino]-4-methylpentanoyl]pyrrolidine-2-carbonyl]amino]-3-(1H-imidazol-5-yl)propanoyl]pyrrolidine-2-carbonyl]amino]-4-oxobutanoyl]amino]-4-methylpentanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-5-[[(2S,3S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-3-hydroxy-1-oxopropan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-5-oxopentanoic acid
Synonyms
107978-77-8; CS1 Peptide; CS-1 fibronectin; Connecting segment 1 fibronectin; Fibronectin connecting segment 1; L-Threonine, L-alpha-aspartyl-L-alpha-glutamyl-L-leucyl-L-prolyl-L-glutaminyl-L-leucyl-L-valyl-L-threonyl-L-leucyl-L-prolyl-L-histidyl-L-prolyl-L-asparaginyl-L-leucyl-L-histidylglycyl-L-prolyl-L-alpha-glutamyl-L-isoleucyl-L-leucyl-L-alpha-aspartyl-L-valyl-L-prolyl-L-seryl-;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.3660 mL 1.8301 mL 3.6603 mL
5 mM 0.0732 mL 0.3660 mL 0.7321 mL
10 mM 0.0366 mL 0.1830 mL 0.3660 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us