Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
References |
[1]. Mitra Assadi, et al. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol. 2010 Jul;14(4):354-9.
|
---|---|
Additional Infomation |
Lithium Citrate can cause developmental toxicity according to state or federal government labeling requirements.
Lithium citrate (anhydrous) is a lithium salt that is the anhydrous form of the trilithium salt of citric acid. The tetrahydrate form is used as a source of lithium for the treatment of anxiety disorders, bipolar disorder, and depression. It contains a citrate(3-). Lithium Citrate is the citrate salt of lithium, a monovalent cation with antimanic activity. Although the exact mechanism is unclear, lithium might exert its mood-stabilizing effect via reduction of catecholamine concentration mediated through transneuronal membrane transport of sodium ion by sodium-potassium-stimulated adenosine triphosphatase (Na-K-ATPase). Alternatively, lithium may decrease cyclic adenosine monophosphate (cAMP) concentrations, which would desensitize hormonal-sensitive adenylyl cyclase receptors. Furthermore, lithium, in recommended dosage, blocks the activity of inositol-1-phosphatase, thereby resulting in the subsequent decrease of postsynaptic second messengers, diacylglycerol and inositol triphosphate, that contribute to chronic cell stimulation by altering electrical activity in the neuron. See also: Lithium Cation (has active moiety). Drug Indication Lithium is used as a mood stabilizer, and is used for treatment of depression and mania. It is often used in bipolar disorder treatment. Mechanism of Action The precise mechanism of action of Li+ as a mood-stabilizing agent is currently unknown. It is possible that Li+ produces its effects by interacting with the transport of monovalent or divalent cations in neurons. An increasing number of scientists have come to the conclusion that the excitatory neurotransmitter glutamate is the key factor in understanding how lithium works. Lithium has been shown to change the inward and outward currents of glutamate receptors (especially GluR3), without a shift in reversal potential. Lithium has been found to exert a dual effect on glutamate receptors, acting to keep the amount of glutamate active between cells at a stable, healthy level, neither too much nor too little. It is postulated that too much glutamate in the space between neurons causes mania, and too little, depression. Another mechanism by which lithium might help to regulate mood include the non-competitive inhibition of an enzyme called inositol monophosphatase. Alternately lithium's action may be enhanced through the deactivation of the GSK-3B enzyme. The regulation of GSK-3B by lithium may affect the circadian clock. GSK-3 is known for phosphorylating and thus inactivating glycogen synthase. GSK-3B has also been implicated in the control of cellular response to damaged DNA. GSK-3 normally phosphorylates beta catenin, which leads to beta catenin degratation. When GSK-3 is inhibited, beta catenin increases and transgenic mice with overexpression of beta catenin express similar behaviour to mice treated with lithium. These results suggest that increase of beta catenin may be a possible pathway for the therapeutic action of lithium. Pharmacodynamics Although lithium has been used for over 50 years in treatment of bipolar disorder, the mechanism of action is still unknown. Lithium's therapeutic action may be due to a number of effects, ranging from inhibition of enzymes such as glycogen synthase kinase 3, inositol phosphatases, or modulation of glutamate receptors. |
Molecular Formula |
C6H5LI3O7
|
---|---|
Molecular Weight |
209.92
|
Exact Mass |
210.052
|
CAS # |
919-16-4
|
Related CAS # |
Lithium citrate tetrahydrate;6080-58-6
|
PubChem CID |
13520
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.12 g/mL at 20 °C
|
Boiling Point |
309.6ºC at 760mmHg
|
Flash Point |
155.2ºC
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
16
|
Complexity |
211
|
Defined Atom Stereocenter Count |
0
|
SMILES |
[Li].O=C(CC(CC(O)=O)(C(O)=O)O)O
|
InChi Key |
WJSIUCDMWSDDCE-UHFFFAOYSA-K
|
InChi Code |
InChI=1S/C6H8O7.3Li/c7-3(8)1-6(13,5(11)12)2-4(9)10;;;/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12);;;/q;3*+1/p-3
|
Chemical Name |
trilithium;2-hydroxypropane-1,2,3-tricarboxylate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 4.7637 mL | 23.8186 mL | 47.6372 mL | |
5 mM | 0.9527 mL | 4.7637 mL | 9.5274 mL | |
10 mM | 0.4764 mL | 2.3819 mL | 4.7637 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.