Size | Price | |
---|---|---|
1mg | ||
Other Sizes |
Targets |
Natrual product from G. mangostana L.
|
---|---|
ln Vitro |
Three new polyphenols, together with 14 known compounds, were isolated from a hot water extract of mangosteen (Garcinia mangostana L.) pericarp, a plant that has been used medicinally in Southeast Asia. The three new polyphenols were characterized as a 4-aryl-2-flavanylbenzopyran derivative (tentatively named GM-1), 1, 3,4,3',5'-tetrahydroxy-5-methoxybenzophenone (GM-2), 2, and 2,3-dihydrochromone derivative (GM-3), 3 on the basis of NMR and MS data. The relative stereostructure of GM-1 was assigned to have 2,3-cis-3,4-trans- and 2″,3″-cis configurations on the basis of the coupling constants of heterocyclic ring protons in the (1)H NMR spectrum along with nuclear Overhauser effect correlations. The HPLC analysis indicated that major polyphenolic components in the hot water extract of mangosteen pericarp were epicatechin and procyanidin B2 (epicatechin dimer). [1]
|
References | |
Additional Infomation |
In the present study, along with 14 known compounds, we isolated 3 new compounds and elucidated their chemical structures. α-Mangostin and other xanthones that were known as representative bioactive components of mangosteen were not observed in the hot water extract of the pericarp because of their low polarity. These prenylated xanthones were effectively extracted with ethanol from the mangosteen pericarp. In traditional medicine, mangosteen pericarp is mainly decocted or macerated in water, thus preserving the bioactive properties of catechin and other polyphenols, which were revealed to be the major polar ingredients of the hot water extract. The componential analysis of water-soluble polar compounds would thus provide valuable information to discuss any function (e.g., antioxidant) of the pericarp arising from bioactive components other than xanthones and benzophenones. [1]
|
Molecular Formula |
C26H34O11
|
---|---|
Molecular Weight |
522.542
|
Exact Mass |
522.21
|
CAS # |
106758-58-1
|
PubChem CID |
21636143
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
0.5
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
11
|
Rotatable Bond Count |
10
|
Heavy Atom Count |
37
|
Complexity |
697
|
Defined Atom Stereocenter Count |
5
|
SMILES |
COC1=CC(=CC2=C1OC(C2CO[C@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)O)O)C4=CC(=C(C=C4)O)OC)CCCO
|
InChi Key |
VTKHRLZMWODHJA-RAGYRXETSA-N
|
InChi Code |
InChI=1S/C26H34O11/c1-33-18-10-14(5-6-17(18)29)24-16(12-35-26-23(32)22(31)21(30)20(11-28)36-26)15-8-13(4-3-7-27)9-19(34-2)25(15)37-24/h5-6,8-10,16,20-24,26-32H,3-4,7,11-12H2,1-2H3/t16?,20-,21-,22+,23-,24?,26-/m1/s1
|
Chemical Name |
(2R,3R,4S,5S,6R)-2-[[2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
|
Synonyms |
Dihydrodehydrodiconiferyl alcohol 9-Oglucoside; 106758-58-1; DIHYDRODEHYDRODICONIFERYL ALCOHOL 9'-O-BETA-D-GLUCOSIDE; 3-(beta-d-glucopyranosyloxymethyl)-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-dihydrobenzofuran
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9137 mL | 9.5686 mL | 19.1373 mL | |
5 mM | 0.3827 mL | 1.9137 mL | 3.8275 mL | |
10 mM | 0.1914 mL | 0.9569 mL | 1.9137 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.