yingweiwo

Dentonin (AC-100)

Cat No.:V56909 Purity: ≥98%
Dentonin (AC-100) is a short peptide fragment derived from MEPE.
Dentonin (AC-100)
Dentonin (AC-100) Chemical Structure CAS No.: 400090-20-2
Product category: Peptides
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Dentonin (AC-100) is a short peptide fragment derived from MEPE. Dentonin promotes osteogenesis by promoting osteoprogenitor cell adhesion and may promote immature adherent cell survival. Dentonin has no significant effect on mature osteoblasts. Dentonin is useful in the study of phosphate homeostasis and bone metabolism.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
MEPE belongs to the family of secreted glycophosphoproteins known as SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein). MEPE controls osteoblast activity and bone mass [1]. In just two to four hours, dentonin (3–30 μg/ml) dramatically boosts cell proliferation and exhibits improved cell adhesion promotion. On the other hand, there are no appreciable variations in the quantity of attached cells[2]. In comparison to all other treatments, dentonin (3-30 μg/ml; 2-24 hours) considerably increases cell areas and promotes osteoblast spreading[2].
References
[1]. Andrew P Sprowson, et al. ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion. J Orthop Res. 2008 Sep;26(9):1256-62.
[2]. N Six, et al. Dentonin, a MEPE fragment, initiates pulp-healing response to injury.J Dent Res. 2007 Aug;86(8):780-5.
Additional Infomation
AC-100 is a novel synthetic peptide derived from an endogenous human protein produced by bone and dental cells (a fragment from matrix extracellular phosphoglycoprotein). It is being developed by Acologix, Inc.
Drug Indication
Investigated for use/treatment in periodontal disease.
Mechanism of Action
In several preclinical models, AC-100 has demonstrated potent and selective dental tissue and bone formation activity, however the exact mechanism is not known. One study (PMID:15153459) showed that AC-100 enhances dental pulp stem cell (DPSC) proliferation by down-regulating P16, accompanied by up-regulation of ubiquitin protein ligase E3A and human ubiquitin-related protein SUMO-1. Enhanced cell proliferation required intact RGD and SGDG motifs in the peptide. This study shows that AC-100 can promote DPSC proliferation, with a potential role in pulp repair.
Pharmacodynamics
In animal models, AC-100 promoted cartilage regeneration. In the study, goats with an osteochondral femoral condylar (knee cartilage) defect were used to evaluate the effects of AC-100 on cartilage regeneration. Cylindrical defects were created in the knee cartilage and were filled with a collagen sponge containing AC-100 at two different doses or a collagen sponge soaked in saline (control group). Post-operative treatments included intra-articular injections of the test articles into the operated knee joint at weeks one, two and three post surgery. Cartilage regeneration was evaluated in one group after 84 days and 168 days in another group. The results demonstrated that the application of AC-100 dose dependently promoted cartilage defect repair. The groups treated with the higher dosage of AC-100 had greater healing outcome scores than the saline control groups. As there was no evidence of an inflammatory response, AC-100 demonstrated a favorable safety profile in the study.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C107H160N30O42
Molecular Weight
2538.59112548828
Exact Mass
2538.133
CAS #
400090-20-2
Related CAS #
Dentonin TFA
PubChem CID
145722058
Appearance
Typically exists as solid at room temperature
LogP
-18.1
Hydrogen Bond Donor Count
38
Hydrogen Bond Acceptor Count
45
Rotatable Bond Count
84
Heavy Atom Count
179
Complexity
5900
Defined Atom Stereocenter Count
21
SMILES
CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)N[C@@H](CCC(=O)N)C(=O)N3CCC[C@H]3C(=O)N[C@@H](CC4=CC=CC=C4)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)NC(=O)CNC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)O)N
InChi Key
PRFOXOFIVVOCCT-GRDAUCDVSA-N
InChi Code
InChI=1S/C107H160N30O42/c1-6-51(4)86(135-99(171)67(43-83(155)156)128-96(168)63(39-75(111)143)127-97(169)65(41-81(151)152)121-78(146)46-116-87(159)55(23-15-33-115-107(113)114)122-92(164)58(28-31-79(147)148)124-91(163)57(26-29-73(109)141)125-93(165)60(36-50(2)3)126-98(170)66(42-82(153)154)131-102(174)85(112)52(5)140)103(175)134-70(49-139)105(177)137-35-17-25-72(137)101(173)130-62(38-54-20-11-8-12-21-54)95(167)133-69(48-138)89(161)118-47-77(145)120-64(40-80(149)150)88(160)117-45-76(144)119-59(27-30-74(110)142)104(176)136-34-16-24-71(136)100(172)129-61(37-53-18-9-7-10-19-53)94(166)123-56(22-13-14-32-108)90(162)132-68(106(178)179)44-84(157)158/h7-12,18-21,50-52,55-72,85-86,138-140H,6,13-17,22-49,108,112H2,1-5H3,(H2,109,141)(H2,110,142)(H2,111,143)(H,116,159)(H,117,160)(H,118,161)(H,119,144)(H,120,145)(H,121,146)(H,122,164)(H,123,166)(H,124,163)(H,125,165)(H,126,170)(H,127,169)(H,128,168)(H,129,172)(H,130,173)(H,131,174)(H,132,162)(H,133,167)(H,134,175)(H,135,171)(H,147,148)(H,149,150)(H,151,152)(H,153,154)(H,155,156)(H,157,158)(H,178,179)(H4,113,114,115)/t51-,52?,55-,56-,57-,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,85-,86-/m0/s1
Chemical Name
(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-1-[(2S)-5-amino-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-hydroxybutanoyl]amino]-3-carboxypropanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-carboxybutanoyl]amino]-5-carbamimidamidopentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]acetyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoyl]amino]hexanoyl]amino]butanedioic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.3939 mL 1.9696 mL 3.9392 mL
5 mM 0.0788 mL 0.3939 mL 0.7878 mL
10 mM 0.0394 mL 0.1970 mL 0.3939 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us