Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
Other Sizes |
|
ln Vitro |
MEPE belongs to the family of secreted glycophosphoproteins known as SIBLING (Small Integrin-Binding Ligand, N-linked Glycoprotein). MEPE controls osteoblast activity and bone mass [1]. In just two to four hours, dentonin (3–30 μg/ml) dramatically boosts cell proliferation and exhibits improved cell adhesion promotion. On the other hand, there are no appreciable variations in the quantity of attached cells[2]. In comparison to all other treatments, dentonin (3-30 μg/ml; 2-24 hours) considerably increases cell areas and promotes osteoblast spreading[2].
|
---|---|
References |
[1]. Andrew P Sprowson, et al. ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion. J Orthop Res. 2008 Sep;26(9):1256-62.
[2]. N Six, et al. Dentonin, a MEPE fragment, initiates pulp-healing response to injury.J Dent Res. 2007 Aug;86(8):780-5. |
Additional Infomation |
AC-100 is a novel synthetic peptide derived from an endogenous human protein produced by bone and dental cells (a fragment from matrix extracellular phosphoglycoprotein). It is being developed by Acologix, Inc.
Drug Indication Investigated for use/treatment in periodontal disease. Mechanism of Action In several preclinical models, AC-100 has demonstrated potent and selective dental tissue and bone formation activity, however the exact mechanism is not known. One study (PMID:15153459) showed that AC-100 enhances dental pulp stem cell (DPSC) proliferation by down-regulating P16, accompanied by up-regulation of ubiquitin protein ligase E3A and human ubiquitin-related protein SUMO-1. Enhanced cell proliferation required intact RGD and SGDG motifs in the peptide. This study shows that AC-100 can promote DPSC proliferation, with a potential role in pulp repair. Pharmacodynamics In animal models, AC-100 promoted cartilage regeneration. In the study, goats with an osteochondral femoral condylar (knee cartilage) defect were used to evaluate the effects of AC-100 on cartilage regeneration. Cylindrical defects were created in the knee cartilage and were filled with a collagen sponge containing AC-100 at two different doses or a collagen sponge soaked in saline (control group). Post-operative treatments included intra-articular injections of the test articles into the operated knee joint at weeks one, two and three post surgery. Cartilage regeneration was evaluated in one group after 84 days and 168 days in another group. The results demonstrated that the application of AC-100 dose dependently promoted cartilage defect repair. The groups treated with the higher dosage of AC-100 had greater healing outcome scores than the saline control groups. As there was no evidence of an inflammatory response, AC-100 demonstrated a favorable safety profile in the study. |
Molecular Formula |
C107H160N30O42
|
---|---|
Molecular Weight |
2538.59112548828
|
Exact Mass |
2538.133
|
CAS # |
400090-20-2
|
Related CAS # |
Dentonin TFA
|
PubChem CID |
145722058
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
-18.1
|
Hydrogen Bond Donor Count |
38
|
Hydrogen Bond Acceptor Count |
45
|
Rotatable Bond Count |
84
|
Heavy Atom Count |
179
|
Complexity |
5900
|
Defined Atom Stereocenter Count |
21
|
SMILES |
CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC2=CC=CC=C2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)N[C@@H](CCC(=O)N)C(=O)N3CCC[C@H]3C(=O)N[C@@H](CC4=CC=CC=C4)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)O)NC(=O)CNC(=O)[C@H](CCCNC(=N)N)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)O)N
|
InChi Key |
PRFOXOFIVVOCCT-GRDAUCDVSA-N
|
InChi Code |
InChI=1S/C107H160N30O42/c1-6-51(4)86(135-99(171)67(43-83(155)156)128-96(168)63(39-75(111)143)127-97(169)65(41-81(151)152)121-78(146)46-116-87(159)55(23-15-33-115-107(113)114)122-92(164)58(28-31-79(147)148)124-91(163)57(26-29-73(109)141)125-93(165)60(36-50(2)3)126-98(170)66(42-82(153)154)131-102(174)85(112)52(5)140)103(175)134-70(49-139)105(177)137-35-17-25-72(137)101(173)130-62(38-54-20-11-8-12-21-54)95(167)133-69(48-138)89(161)118-47-77(145)120-64(40-80(149)150)88(160)117-45-76(144)119-59(27-30-74(110)142)104(176)136-34-16-24-71(136)100(172)129-61(37-53-18-9-7-10-19-53)94(166)123-56(22-13-14-32-108)90(162)132-68(106(178)179)44-84(157)158/h7-12,18-21,50-52,55-72,85-86,138-140H,6,13-17,22-49,108,112H2,1-5H3,(H2,109,141)(H2,110,142)(H2,111,143)(H,116,159)(H,117,160)(H,118,161)(H,119,144)(H,120,145)(H,121,146)(H,122,164)(H,123,166)(H,124,163)(H,125,165)(H,126,170)(H,127,169)(H,128,168)(H,129,172)(H,130,173)(H,131,174)(H,132,162)(H,133,167)(H,134,175)(H,135,171)(H,147,148)(H,149,150)(H,151,152)(H,153,154)(H,155,156)(H,157,158)(H,178,179)(H4,113,114,115)/t51-,52?,55-,56-,57-,58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,85-,86-/m0/s1
|
Chemical Name |
(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-1-[(2S)-5-amino-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-hydroxybutanoyl]amino]-3-carboxypropanoyl]amino]-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-4-carboxybutanoyl]amino]-5-carbamimidamidopentanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-carboxypropanoyl]amino]acetyl]amino]-5-oxopentanoyl]pyrrolidine-2-carbonyl]amino]-3-phenylpropanoyl]amino]hexanoyl]amino]butanedioic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 0.3939 mL | 1.9696 mL | 3.9392 mL | |
5 mM | 0.0788 mL | 0.3939 mL | 0.7878 mL | |
10 mM | 0.0394 mL | 0.1970 mL | 0.3939 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.