yingweiwo

Pravastatin (CS-514)

Alias: pravastatin; 81093-37-0; Pravastatinum; Pravastatina; Pravastatine; Eptastatin; Pravachol; Pravator;
Cat No.:V29227 Purity: ≥98%
Pravastatin (CS514)is a potent HMG-CoA reductase inhibitor against sterol synthesis with IC50 of 5.6 μM.
Pravastatin (CS-514)
Pravastatin (CS-514) Chemical Structure CAS No.: 81093-37-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Pravastatin (CS-514):

  • Pravastatin sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Pravastatin (CS514) is a potent HMG-CoA reductase inhibitor against sterol synthesis with IC50 of 5.6 μM. It is natural product isolated from cultures of Nocardia autotrophica. Pravastatin competitively inhibits hepatic hydroxymethyl-glutaryl coenzyme A reductase, the enzyme which catalyzes the conversion of HMG-CoA to mevalonate, a key step in cholesterol synthesis. This agent lowers plasma cholesterol and lipoprotein levels, and modulates immune responses by suppressing MHC II on interferon gamma-stimulated, antigen-presenting cells such as human vascular endothelial cells.

Biological Activity I Assay Protocols (From Reference)
Targets
HMG-CoA reductase [IC50 = 5.6 μM.]
ln Vitro
Pravastatin (CS-514), a statin medicine, is used in combination with diet, exercise, and weight loss to decrease cholesterol and prevent cardiovascular disease[1].
Pravastatin Sodium is the sodium salt of pravastatin with cholesterol-lowering and potential antineoplastic activities. Pravastatin competitively inhibits hepatic hydroxymethyl-glutaryl coenzyme A (HMG-CoA) reductase, the enzyme which catalyzes the conversion of HMG-CoA to mevalonate, a key step in cholesterol synthesis. This agent lowers plasma cholesterol and lipoprotein levels, and modulates immune responses by suppressing MHC II (major histocompatibility complex II) on interferon gamma-stimulated, antigen-presenting cells such as human vascular endothelial cells. In addition, pravastatin, like other statins, exhibits pro-apoptotic, growth inhibitory, and pro-differentiation activities in a variety of tumor cells; these antineoplastic activities may be due, in part, to inhibition of the isoprenylation of Ras and Rho GTPases and related signaling cascades.
ln Vivo
Pravastatin (40 mg, single dose) causes a reduction in cholesterol synthesis in human monocyte derived macrophages by 62% in healthy subjects and 47% in hypercholesterolaemic patients. Pravastatin (40 mg/day, 8 weeks) results in a 55% inhibition of cholesterol synthesis and a 57% increase in LDL degradation in hypercholesterolaemic patients. Pravastatin (30 mg/kg/d) results in decreased length of the dystrophic lesions by 34% and recovery of muscular structure in Male Wistar rats receiving irradiation, associated with decreased CCN2 level.
Enzyme Assay
Determination of Lipid Peroxide Levels in Plasma[2] Products of lipid peroxidation were assessed by the thiobarbituric acid (TBA) reactive substances (TBARS) method, which detects the levels of malondialdehyde (MDA), the main product of lipid peroxidation. Briefly, 100 µL of plasma was added into testing tubes and incubated with 100 µL of distilled water, 50 µL of 8.1% sodium dodecyl sulfate (SDS), 375 µL of acetic acid 20%, and 375 µL of TBA 0.8% for one hour in a water-bath at 95 °C. Then, the samples were centrifuged at 4000 rpm for 10 min. TBA was added to samples and a colorimetric reaction immediately obtained, which was measured through a wavelength of 532 nm, as previously described. The plasmatic levels of MDA were presented in nmol/mL.
Cell Assay
Vascular Reactivity[2] Abdominal aorta segments were dissected and cut into four rings (3 mm), in which two rings had their endothelium mechanically removed and two had their endothelium preserved. Each aortic ring was hung between two wire hooks, and placed into an organ chamber containing Krebs–Henseleit solution (NaCl 130; KCl 4.7; CaCl2 1.6; KH2PO4 1.2; MgSO4 1.2; NaHCO3 15; glucose 11.1; in mmol/L) kept at pH 7.4 and 37 °C, and bubbled with 95% O2 and 5% CO2, and then were stabilized under basal tension of 1.5 g.[2]
Animal Protocol
Female Wistar rats were were allocated in cages with a 12 h light/dark cycle and controlled temperature (23 ± 2 °C), with access to food and water ad libitum. For mating overnight, the animals were kept in cages in the ratio of two females to one male in late afternoon. The following day, the detection of sperm and estrus cells in a vaginal smear confirmed the first day of gestation, and pregnant rats were distributed into four experimental groups:[2]
1. Normotensive Pregnant rats (Norm-Preg group): saline (0.9% NaCl) solution (0.3–0.45 mL) was intraperitoneally (i.p.) administered on days 1, 7, and 14, and saline was administered by gavage from pregnancy day 10 until 19 (n = 8).[2]
2. Normotensive pregnant rats treated with pravastatin (Norm-Preg + Prava group): saline was i.p. administered on days 1, 7, and 14, and pravastatin (10 mg/kg/day) was administrated by gavage from pregnancy day 10 until 19 (n = 8).[2]
3. Hypertensive pregnant rats (HTN-Preg group): hypertension was induced by i.p. administration of 12.5 mg of DOCA on the first day of pregnancy, followed by i.p. injection of 6.5 mg of DOCA on days 7 and 14 of pregnancy; drinking water was replaced by saline from pregnancy day 1 until 19; and saline was administered by gavage from pregnancy day 10 until 19 (n = 8).[2]
4. Hypertensive pregnant rats treated with pravastatin (HTN-Preg + Prava group): hypertension was induced by i.p. administration of 12.5 mg of DOCA on the first day of pregnancy, followed by i.p. injection of 6.5 mg of DOCA on days 7 and 14 of pregnancy; drinking water was replaced by saline from pregnancy day 1 until 19; and pravastatin (10 mg/kg/day) was administrated by gavage from pregnancy day 10 until 19 (n = 8).[2]
On pregnancy day 19, rats were euthanized by overdose of isoflurane followed by exsanguination. Subsequently, a laparotomy was performed for the exposure/removal of the pregnant uterus, and the abdominal aorta was withdrawn. The abdominal aorta was prepared for vascular reactivity experiments. Placental weight and litter size (total number of pups) were recorded. Placenta and plasma were stored at −80 °C until use for biochemical analysis.[2]
Dissolved in water; 30 mg/kg/day; oral administration
Male Wistar rats receiving irradiation for 5 weeks
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Pravastatin is absorbed 60-90 min after oral administration and it presents a low bioavailability of 17%. This low bioavailability can be presented due to the polar nature of pravastatin which produces a high range of first-pass metabolism and incomplete absorption. Pravastatin is rapidly absorbed from the upper part of the small intestine via proton-coupled carrier-mediated transport to be later taken up in the livery by the sodium-independent bile acid transporter. The reported time to reach the peak serum concentration in the range of 30-55 mcg/L is of 1-1.5 hours with an AUC ranging from 60-90 mcg.h/L.
From the administered dose of pravastatin, about 70% is eliminated in the feces while about 20% is obtained in the urine. When pravastatin is administered intravenously, approximately 47% of the administered dose is eliminated via the urine with 53% of the dose eliminated either via biotransformation of biliary.
The reported steady-state volume of distribution of pravastatin is reported to be of 0.5 L/kg. This pharmacokinetic parameter in children was found to range from 31-37 ml/kg.
The reported clearance rate of pravastatin ranges from 6.3-13.5 ml.min/kg in adults while in children it has been reported to be of 4-11 L/min.
/MILK/ In lactating rats, up to 7 times higher levels of pravastatin are present in the breast milk than in the maternal plasma, which corresponds to exposure 2 times the MRHD of 80 mg/day based on body surface area (mg/sq m).
In pregnant rats, pravastatin crosses the placenta and is found in fetal tissue at 30% of the maternal plasma levels following administration of a single dose of 20 mg/day orally on gestation day 18, which corresponds to exposure 2 times the MRHD of 80 mg daily based on body surface area (mg/ssq m).
Low levels of radioactivity were found in the fetuses of rats dosed orally with radiolabeled pravastatin sodium.
Dogs are unique as compared to all other species tested, including man, in that they have a much greater systemic exposure to pravastatin. Pharmacokinetic data from a study in dogs at a dose of 1.1 mg/kg (comparable to a 40 mg dose in humans) showed that the elimination of pravastatin is slower in dogs than in humans. Absolute bioavailability is two times greater in dogs compared to humans and estimated renal and hepatic extraction of pravastatin are about one-tenth and onehalf, respectively, than those in humans. When concentrations of pravastatin in plasma or serum of rats, dogs, rabbits, monkeys and humans were compared, the exposure in dogs was dramatically higher, based on both CMAX and AUC. The mean AUC value in man at a therapeutic dose of 40 mg is approximately 100 times less than that in the dog at the no-effect dose of 12.5 mg/kg, and approximately 180 times lower than that in dogs at the threshold dose of 25 mg/kg for cerebral hemorrhage.
For more Absorption, Distribution and Excretion (Complete) data for Pravastatin (23 total), please visit the HSDB record page.
Metabolism / Metabolites
After initial administration, pravastatin undergoes extensive first-pass extraction in the liver. However, pravastatin's metabolism is not related to the activity of the cytochrome P-450 isoenzymes and its processing is performed in a minor extent in the liver. Therefore, this drug is highly exposed to peripheral tissues. The metabolism of pravastatin is ruled mainly by the presence of glucuronidation reactions with very minimal intervention of CYP3A enzymes. After metabolism, pravastatin does not produce active metabolites. This metabolism is mainly done in the stomach followed by a minor portion of renal and hepatic processing. The major metabolite formed as part of pravastatin metabolism is the 3-alpha-hydroxy isomer. The activity of this metabolite is very clinically negligible.
The major biotransformation pathways for pravastatin are: (a) isomerization to 6-epi pravastatin and the 3a-hydroxyisomer of pravastatin (SQ 31,906) and (b) enzymatic ring hydroxylation to SQ 31,945. The 3a-hydroxyisomeric metabolite (SQ 31,906) has 1/10 to 1/40 the HMG-CoA reductase inhibitory activity of the parent compound. Pravastatin undergoes extensive first-pass extraction in the liver (extraction ratio 0.66).
Biological Half-Life
The reported elimination half-life of pravastatin is reported to be of 1.8 hours.
Following single dose oral administration of (14)C-pravastatin, the radioactive elimination half life for pravastatin is 1.8 hours in humans.
In a two-way crossover study, eight healthy male subjects each received an intravenous and an oral dose of (14)C-pravastatin sodium. ... The estimated average plasma elimination half-life of pravastatin was 0.8 and 1.8 hr for the intravenous and oral routes, respectively. ...
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Pravastatin, a hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitor (i.e., statin), is an antilipemic agent. Pravastatin occurs as an odorless, white to off-white, fine or crystalline powder formulated into a tablet. It is used as an adjunct to lifestyle modifications for prevention of cardiovascular events and for the management of dyslipidemias. HUMAN EXPOSURE AND TOXICITY: Pravastatin is contraindicated for use in pregnant woman because of the potential for fetal harm. There have also been rare reports of fatal and non-fatal hepatic failure in patients taking statins, including pravastatin. Also, rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with pravastatin and other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. ANIMAL STUDIES: Acute studies were performed in both mice and rats. Signs of toxicity in mice were decreased activity, irregular respiration, ptosis, lacrimation, soft stool, diarrhea, urine-stained abdomen, ataxia, creeping behavior, loss of righting reflex, hypothermia, urinary incontinence, pilo-erection convulsion and/or prostration. Signs of toxicity in rats were soft stool, diarrhea, decreased activity, irregular respiration, waddling gait, and ataxia, loss of righting reflex and/or weight loss. In a 2-year study in rats fed pravastatin at doses of 10, 30, or 100 mg/kg bw, there was an increased incidence of hepatocellular carcinomas in males at the highest dose. Likewise, in a 2-year study in mice fed pravastatin at doses of 250 and 500 mg/kg/day, there was an increased incidence of hepatocellular carcinomas in males and females; lung adenomas in females were increased. In dogs, pravastatin sodium was toxic at high doses and caused cerebral hemorrhage with clinical evidence of acute CNS toxicity such as ataxia, convulsions. The threshold dose for CNS toxicity is 25 mg/kg. Cerebral hemorrhages have not been observed in any other laboratory species and the CNS toxicity in dogs may represent a species-specific effect. In pregnant rats given oral gavage doses of 4, 20, 100, 500, and 1000 mg/kg/day from gestation days 7 through 17 (organogenesis) increased mortality of offspring and increased cervical rib skeletal anomalies were observed at >/= 100 mg/kg/day. In pregnant rats given oral gavage doses of 10, 100, and 1000 mg/kg/day from gestation day 17 through lactation day 21 (weaning), increased mortality of offspring and developmental delays were observed at >/= 100 mg/kg/day. In a fertility study in adult rats with daily doses up to 500 mg/kg, pravastatin did not produce any adverse effects on fertility or general reproductive performance. No evidence of mutagenicity was observed in vitro, with or without metabolic activation, in the following studies: microbial mutagen tests, using mutant strains of Salmonella typhimurium or Escherichia coli; a forward mutation assay in L5178Y TK +/- mouse lymphoma cells; a chromosomal aberration test in hamster cells; and a gene conversion assay using Saccharomyces cerevisiae. In addition, there was no evidence of mutagenicity in either a dominant lethal test in mice or a micronucleus test in mice.
Hepatotoxicity
Pravastatin therapy is associated with mild, asymptomatic and usually transient serum aminotransferase elevations. In summary analyses of large scale studies with prospective monitoring, ALT elevations above normal occurred in 3% to 7% of patients; but levels above 3 times the upper limit of normal (ULN) occurred in less than 1.2% of both pravastatin- as well as in placebo-treated subjects. Most of these elevations were self-limited and did not require dose modification. Pravastatin has been only rarely associated with clinically apparent hepatic injury with symptoms or jaundice at a rate estimated to be 1 per 100,000 users or less. In the case reports, latency varied from 2 to 9 months and the pattern of serum enzyme elevations from cholestatic to hepatocellular. Recovery was complete within a few months. Rash, fever and eosinophilia were uncommon as were autoantibodies, but few cases have been reported and the full clinical syndrome not well defined. Pravastatin appears to be less likely to cause clinically apparent liver injury than atorvastatin, simvastatin and rosuvastatin.
Likelihood score: B (likely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Levels of pravastatin in milk are low, but no relevant published information exists with its use during breastfeeding. The consensus opinion is that women taking a statin should not breastfeed because of a concern with disruption of infant lipid metabolism. However, others have argued that children homozygous for familial hypercholesterolemia are treated with statins beginning at 1 year of age, that statins have low oral bioavailability, and risks to the breastfed infant are low, especially with pravastatin and rosuvastatin. Until more data become available, an alternate drug may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Due its polarity, pravastatin binding to plasma proteins is very limited and the bound form represents only about 43-48% of the administered dose. However, the activity of p-glycoprotein in luminal apical cells and OATP1B1 produce significant changes to pravastatin distribution and elimination.
Interactions
The HMG-CoA reductase inhibitors are a class of drugs also known as statins. These drugs are effective and widely prescribed for the treatment of hypercholesterolemia and prevention of cardiovascular morbidity and mortality. Seven statins are currently available: atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin and simvastatin. Although these drugs are generally well tolerated, skeletal muscle abnormalities from myalgia to severe lethal rhabdomyolysis can occur. Factors that increase statin concentrations such as drug-drug interactions can increase the risk of these adverse events. Drug-drug interactions are dependent on statins' pharmacokinetic profile: simvastatin, lovastatin and atorvastatin are metabolized through cytochrome P450 (CYP) 3A, while the metabolism of the other statins is independent of this CYP. All statins are substrate of organic anion transporter polypeptide 1B1, an uptake transporter expressed in hepatocyte membrane that may also explain some drug-drug interactions. Many HIV-infected patients have dyslipidemia and comorbidities that may require statin treatment. HIV-protease inhibitors (HIV PIs) are part of recommended antiretroviral treatment in combination with two reverse transcriptase inhibitors. All HIV PIs except nelfinavir are coadministered with a low dose of ritonavir, a potent CYP3A inhibitor to improve their pharmacokinetic properties. Cobicistat is a new potent CYP3A inhibitor that is combined with elvitegravir and will be combined with HIV-PIs in the future. The HCV-PIs boceprevir and telaprevir are both, to different extents, inhibitors of CYP3A. This review summarizes the pharmacokinetic properties of statins and PIs with emphasis on their metabolic pathways explaining clinically important drug-drug interactions. Simvastatin and lovastatin metabolized through CYP3A have the highest potency for drug-drug interaction with potent CYP3A inhibitors such as ritonavir- or cobicistat-boosted HIV-PI or the hepatitis C virus (HCV) PI, telaprevir or boceprevir, and therefore their coadministration is contraindicated. Atorvastatin is also a CYP3A substrate, but less potent drug-drug interactions have been reported with CYP3A inhibitors. Non-CYP3A-dependent statin concentrations are also affected although to a lesser extent when coadministered with HIV or HCV PIs, mainly through interaction with OATP1B1, and treatment should start with the lowest available statin dose. Effectiveness and occurrence of adverse effects should be monitored at regular time intervals.
The risk of skeletal muscle effects may be enhanced when pravastatin is used in combination with niacin; a reduction in Pravachol dosage should be considered in this setting.
Because it is known that the risk of myopathy during treatment with hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors is increased with concurrent administration of other fibrates, Pravachol should be administered with caution when used concomitantly with other fibrates
Due to an increased risk of myopathy/rhabdomyolysis when hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are coadministered with gemfibrozil, concomitant administration of Pravachol with gemfibrozil should be avoided
For more Interactions (Complete) data for Pravastatin (16 total), please visit the HSDB record page.
Non-Human Toxicity Values
LD50 Dog (male) oral >800 mg/kg
LD50 Rat (female) sc 4455 mg/kg
LD50 Rat (male) sc 3172 mg/kg
LD50 Rat (female) iv 440 mg/kg
For more Non-Human Toxicity Values (Complete) data for Pravastatin (12 total), please visit the HSDB record page.
References

[1]. Pravastatin. A review of its pharmacological properties and therapeutic potential in hypercholesterolaemia. Drugs. 1991 Jul;42(1):65-89.

[2]. Pravastatin Prevents Increases in Activity of Metalloproteinase-2 and Oxidative Stress, and Enhances Endothelium-Derived Nitric Oxide-Dependent Vasodilation in Gestational Hypertension. Antioxidants (Basel) . 2023 Apr 16;12(4):939.

Additional Infomation
Therapeutic Uses
Anticholesteremic Agents; Hydroxymethylglutaryl-CoA Reductase Inhibitors
In hypercholesterolemic patients without clinically evident coronary heart disease (CHD), Pravachol (pravastatin sodium) is indicated to: reduce the risk of myocardial infarction, reduce the risk of undergoing myocardial revascularization procedures and reduce the risk of cardiovascular mortality with no increase in death from non-cardiovascular causes. /Included in US product label/
In patients with clinically evident coronary heart disease (CHD), Pravachol is indicated to: reduce the risk of total mortality by reducing coronary death, reduce the risk of myocardial infarction (MI), reduce the risk of undergoing myocardial revascularization procedures, reduce the risk of stroke and stroke/transient ischemic attack (TIA) and slow the progression of coronary atherosclerosis. /Included in US product label/
Pravachol is indicated: As an adjunct to diet to reduce elevated total cholesterol (Total-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and triglyceride (TG) levels and to increase high-density lipoprotein cholesterol (HDL-C) in patients with primary hypercholesterolemia and mixed dyslipidemia (Fredrickson Types IIa and IIb). As an adjunct to diet for the treatment of patients with elevated serum TG levels (Fredrickson Type IV). For the treatment of patients with primary dysbetalipoproteinemia (Fredrickson Type III) who do not respond adequately to diet. As an adjunct to diet and lifestyle modification for treatment of heterozygous familial hypercholesterolemia (HeFH) in children and adolescent patients ages 8 years and older if after an adequate trial of diet the following findings are present: a. LDL-C remains >/=190 mg/dL or b. LDL-C remains >/=160 mg/dL and there is a positive family history of premature cardiovascular disease (CVD) or two or more other CVD risk factors are present in the patient. /Included in US product label/
For more Therapeutic Uses (Complete) data for Pravastatin (9 total), please visit the HSDB record page.
Drug Warnings
Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with pravastatin and other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects.
The risk of myopathy during treatment with statins is increased with concurrent therapy with either erythromycin, cyclosporine, niacin, or fibrates. However, neither myopathy nor significant increases in CPK levels have been observed in 3 reports involving a total of 100 post-transplant patients (24 renal and 76 cardiac) treated for up to 2 years concurrently with pravastatin 10 to 40 mg and cyclosporine. Some of these patients also received other concomitant immunosuppressive therapies. Further, in clinical trials involving small numbers of patients who were treated concurrently with pravastatin and niacin, there were no reports of myopathy. Also, myopathy was not reported in a trial of combination pravastatin (40 mg/day) and gemfibrozil (1200 mg/day), although 4 of 75 patients on the combination showed marked CPK elevations versus 1 of 73 patients receiving placebo. There was a trend toward more frequent CPK elevations and patient withdrawals due to musculoskeletal symptoms in the group receiving combined treatment as compared with the groups receiving placebo, gemfibrozil, or pravastatin monotherapy. The use of fibrates alone may occasionally be associated with myopathy. The benefit of further alterations in lipid levels by the combined use of Pravachol with fibrates should be carefully weighed against the potential risks of this combination.
There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum CPK, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation and improvement with immunosuppressive agents.
Uncomplicated myalgia has ... been reported in pravastatin-treated patients. Myopathy, defined as muscle aching or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values to greater than 10 times the ULN, was rare (<0.1%) in pravastatin clinical trials. Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevation of CPK. Predisposing factors include advanced age (>/= 65), uncontrolled hypothyroidism, and renal impairment.
For more Drug Warnings (Complete) data for Pravastatin (27 total), please visit the HSDB record page.
Pharmacodynamics
The action of pravastatin on the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase produces an increase in the expression of hepatic LDL receptors which in order decreases the plasma levels of LDL cholesterol. The effect of pravastatin has been shown to significantly reduce the circulating total cholesterol, LDL cholesterol, and apolipoprotein B. As well, it modestly reduces very low-density-lipoproteins (VLDL) cholesterol and triglycerides while increasing the level of high-density lipoprotein (HDL) cholesterol and apolipoprotein A. In clinical trials with patients with a history of myocardial infarction or angina with high total cholesterol, pravastatin decreased the level of total cholesterol by 18%, decreased of LDL by 27%, decreased of triglycerides by 6% and increased of high-density lipoprotein (HDL) by 4%. As well, there was reported a decrease in risk of death due to coronary disease of 24%. When coadministered with [cholestyramine], pravastatin can reduce by 50% the levels of LDL and slow the progression of atherosclerosis and the risk of myocardial infarction and death.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₂₃H₃₆O₇
Molecular Weight
424.53
Exact Mass
424.246
CAS #
81093-37-0
Related CAS #
Pravastatin sodium;81131-70-6
PubChem CID
54687
Appearance
Typically exists as solid at room temperature
Density
1.2±0.1 g/cm3
Boiling Point
634.5±55.0 °C at 760 mmHg
Melting Point
171.2-173ºC
Flash Point
213.2±25.0 °C
Vapour Pressure
0.0±4.2 mmHg at 25°C
Index of Refraction
1.555
LogP
1.35
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
11
Heavy Atom Count
30
Complexity
656
Defined Atom Stereocenter Count
8
SMILES
C([C@H]1[C@@H](C)C=CC2[C@@H]1[C@H](C[C@@H](C=2)O)OC(=O)[C@@H](C)CC)C[C@@H](O)C[C@@H](O)CC(=O)O
InChi Key
TUZYXOIXSAXUGO-PZAWKZKUSA-N
InChi Code
InChI=1S/C23H36O7/c1-4-13(2)23(29)30-20-11-17(25)9-15-6-5-14(3)19(22(15)20)8-7-16(24)10-18(26)12-21(27)28/h5-6,9,13-14,16-20,22,24-26H,4,7-8,10-12H2,1-3H3,(H,27,28)/t13-,14-,16+,17+,18+,19-,20-,22-/m0/s1
Chemical Name
(3R,5R)-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-[(2S)-2-methylbutanoyl]oxy-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-dihydroxyheptanoic acid
Synonyms
pravastatin; 81093-37-0; Pravastatinum; Pravastatina; Pravastatine; Eptastatin; Pravachol; Pravator;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3555 mL 11.7777 mL 23.5555 mL
5 mM 0.4711 mL 2.3555 mL 4.7111 mL
10 mM 0.2356 mL 1.1778 mL 2.3555 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03944512 Active, not recruiting Drug: Pravastatin
Other: Placebo
Preeclampsia
Obstetric Labor Complications
The George Washington University
Biostatistics Center
July 17, 2019 Phase 3
NCT01717586 Active, not recruiting Drug: Pravastatin
Drug: Placebo
Preeclampsia The University of Texas Medical
Branch, Galveston
August 2012 Phase 1
NCT01146093 Completed Drug: Pravastatin Sodium Healthy Dr. Reddy's Laboratories Limited November 2002 Phase 1
NCT01146106 Completed Drug: Pravastatin Sodium Healthy Dr. Reddy's Laboratories Limited December 2002 Phase 1
Contact Us