yingweiwo

PNU-142633

Alias: PNU 142633; PNU142633; PNU-142633; 187665-65-2; PNU 142633; 1H-2-Benzopyran-6-carboxamide, 1-(2-(4-(4-(aminocarbonyl)phenyl)-1-piperazinyl)ethyl)-3,4-dihydro-N-methyl-, (1S)-; B54P1BQ73L; CHEMBL441095; (1S)-1-[2-[4-(4-carbamoylphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-isochromene-6-carboxamide; UNII-B54P1BQ73L; PNU-142633
Cat No.:V9177 Purity: ≥98%
PNU-142633 is a high-affinity, selective and orally bioactive 5-HT1D agonist with Ki of 6 nM and >18 000 nM for human 5-HT1D receptor and human 5-HT1B receptor, respectively.
PNU-142633
PNU-142633 Chemical Structure CAS No.: 187665-65-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
PNU-142633 is a high-affinity, selective and orally bioactive 5-HT1D agonist with Ki of 6 nM and >18 000 nM for human 5-HT1D receptor and human 5-HT1B receptor, respectively. PNU-142633 has antimigraine efficacy.
Biological Activity I Assay Protocols (From Reference)
Targets
5-HT1D receptor (Kis = 6 nM)
ln Vitro
Sumatriptan's intrinsic activity was found to be 84%, while PNU-142633's at the human 5-HT1D receptor was shown to be 70% intrinsic activity in a cell sensor cell-based test [1].
ln Vivo
Neurogenic plasma protein extravasation was stopped in male Hartley guinea pigs treated intravenously with PNU-142633 (0.03-1 mg/kg). It is not possible for PNU-142633 to alter these vascular beds' resistance [1].
In this randomized, double-blind, placebo-controlled, parallel-group study, patients received a single 50-mg oral dose of a 5-HT(1D) agonist, PNU-142633 (n = 34), or matching placebo (n = 35) during an acute migraine attack. No statistically significant treatment effects were observed at 1 and 2 h after dosing, even after stratifying by baseline headache intensity. At 1 and 2 h post-dose, 8.8% and 29.4% of the PNU-142633 group, respectively, and 8.6% and 40.0% of the placebo group, respectively, experienced headache relief; 2.9% and 8.8% of the PNU-142633 group and 0% and 5.7% of the placebo group were free of headache pain. Adverse events associated with PNU-142633 treatment included chest pain (two patients) and QTc prolongation (three patients). Results from this study suggest that anti-migraine efficacy is not mediated solely through the 5-HT(1D) receptor subtype, although this receptor may contribute, at least in part, to the adverse cardiovascular effects observed with 5-HT agonist medications[2].
Enzyme Assay
The present study describes the preclinical pharmacology of a highly selective 5-HT1D receptor agonist PNU-142633. PNU-142633 binds with a Ki of 6 nm at the human 5-HT1D receptor and a Ki of> 18 000 nm at the human 5-HT1B receptor. The intrinsic activity of PNU-142633 at the human 5-HT1D receptor was determined to be 70% that of 5-HT in a cytosensor cell-based assay compared with 84% for that of sumatriptan. PNU-142633 was equally effective as sumatriptan and a half-log more potent than sumatriptan in preventing plasma protein extravasation induced by electrical stimulation of the trigeminal ganglion. Like sumatriptan, PNU-142633 reduced the increase in cat nucleus trigeminal caudalis blood flow elicited by electrical stimulation of the trigeminal ganglion compared with the vehicle control. The direct vasoconstrictor potential of PNU-142633 was evaluated in vascular beds. Sumatriptan increased vascular resistance in carotid, meningeal and coronary arteries while PNU-142633 failed to alter resistance in these vascular beds. These data are discussed in relation to the clinical findings of PNU-142633 in a phase II acute migraine study [1].
Animal Protocol
Animal/Disease Models: Male Hartley guinea pig (250-300 g) stimulated with bipolar electrodes [1]
Doses: 0.03 mg/kg, 0.1 mg/kg, 0.3 mg/kg, 1 mg/kg
Route of Administration: intravenous (iv) (iv)injection
Experimental Results: External Significant reduction in osmosis was effective at doses of 0.1 and 0.3 mg/kg, but not at doses of 0.03 and 1.0 mg/kg.
References
[1]. McCall RB, et al. Preclinical studies characterizing the anti-migraine and cardiovascular effects of the selective 5-HT1D receptor agonist PNU-142633. Cephalalgia. 2002 Dec;22(10):799-806.
[2]. Gomez-Mancilla B, et al. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia. 2001 Sep;21(7):727-32.
Additional Infomation
These studies investigated the pharmacology of neurogenic dural vasodilation in anaesthetized guinea-pigs. Following introduction of a closed cranial window the meningeal (dural) blood vessels were visualized using intravital microscopy and the diameter constantly measured using a video dimension analyser. Dural blood vessels were constricted with endothelin-1 (3 microg kg(-1), i.v.) prior to dilation of the dural blood vessels with calcitonin gene-related peptide (CGRP; 1 microg kg(-1), i.v.) or local electrical stimulation (up to 300 microA) of the dura mater. In guinea-pigs pre-treated with the CGRP receptor antagonist CGRP((8-37)) (0.3 mg kg(-1), i.v.) the dilator response to electrical stimulation was inhibited by 85% indicating an important role of CGRP in neurogenic dural vasodilation in this species. Neurogenic dural vasodilation was also blocked by the 5-HT(1B/1D) agonist rizatriptan (100 microg kg(-1)) with estimated plasma levels commensurate with concentrations required for anti-migraine efficacy in patients. Rizatriptan did not reverse the dural dilation evoked by CGRP indicating an action on presynaptic receptors located on trigeminal sensory fibres innervating dural blood vessels. In addition, neurogenic dural vasodilation was also blocked by the selective 5-HT(1D) agonist PNU-142633 (100 microg kg(-1)) but not by the 5-HT(1F) agonist LY334370 (3 mg kg(-1)) suggesting that rizatriptan blocks neurogenic vasodilation via an action on 5-HT(1D) receptors located on perivascular trigeminal nerves to inhibit CGRP release. This mechanism may underlie one of the anti-migraine actions of the triptan class exemplified by rizatriptan and suggests that the guinea-pig is an appropriate species in which to investigate the pharmacology of neurogenic dural vasodilation. Br J Pharmacol. 2001 Aug;133(7):1029-34.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H30N4O3
Molecular Weight
422.53
Exact Mass
422.232
Elemental Analysis
C, 68.22; H, 7.16; N, 13.26; O, 11.36
CAS #
187665-65-2
PubChem CID
9845148
Appearance
White to off-white solid powder
LogP
3.065
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
6
Heavy Atom Count
31
Complexity
614
Defined Atom Stereocenter Count
1
SMILES
CNC(C1=CC2CCO[C@](CCN3CCN(C4=CC=C(C(=O)N)C=C4)CC3)([H])C=2C=C1)=O
InChi Key
PNTVCCRNJOGKGA-QFIPXVFZSA-N
InChi Code
InChI=1S/C24H30N4O3/c1-26-24(30)19-4-7-21-18(16-19)9-15-31-22(21)8-10-27-11-13-28(14-12-27)20-5-2-17(3-6-20)23(25)29/h2-7,16,22H,8-15H2,1H3,(H2,25,29)(H,26,30)/t22-/m0/s1
Chemical Name
1H-2-Benzopyran-6-carboxamide, 1-(2-(4-(4-(aminocarbonyl)phenyl)-1-piperazinyl)ethyl)-3,4-dihydro-N-methyl-, (1S)-
Synonyms
PNU 142633; PNU142633; PNU-142633; 187665-65-2; PNU 142633; 1H-2-Benzopyran-6-carboxamide, 1-(2-(4-(4-(aminocarbonyl)phenyl)-1-piperazinyl)ethyl)-3,4-dihydro-N-methyl-, (1S)-; B54P1BQ73L; CHEMBL441095; (1S)-1-[2-[4-(4-carbamoylphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-isochromene-6-carboxamide; UNII-B54P1BQ73L; PNU-142633
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3667 mL 11.8335 mL 23.6670 mL
5 mM 0.4733 mL 2.3667 mL 4.7334 mL
10 mM 0.2367 mL 1.1833 mL 2.3667 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us