yingweiwo

Plazomicin (ACHN490)

Alias: ACHN490; ACHN-490; Trade name: Zemdri
Cat No.:V3888 Purity: ≥98%
Plazomicin (ACHN490; ACHN-490;Trade name:Zemdri) is a next-generation aminoglycoside antibacterial derived from sisomicin by appending a hydroxy-aminobutyric acid (HABA) substituent at position 1 and a hydroxyethyl substituent at position 6'.
Plazomicin (ACHN490)
Plazomicin (ACHN490) Chemical Structure CAS No.: 1154757-24-0
Product category: Others 8
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Plazomicin (ACHN490; ACHN-490; Trade name: Zemdri) is a next-generation aminoglycoside antibacterial derived from sisomicin by appending a hydroxy-aminobutyric acid (HABA) substituent at position 1 and a hydroxyethyl substituent at position 6'. In June 2018, Plazomicin gained FDA approval to treat adults with complicated urinary tract infections. Plazomicin has been reported to demonstrate in vitro synergistic activity when combined with daptomycin or ceftobiprole versus methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA) and against Pseudomonas aeruginosa when combined with cefepime, doripenem, imipenem or piperacillin/tazobactam. It also demonstrates potent in vitro activity versus carbapenem-resistant Acinetobacter baumannii.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Administration of 15 mg/kg plazomicin by 30-minute IV infusion resulted in peak plasma concentrations of 73.7 ± 19.7 μg/mL in healthy adult subjects and 51.0 ± 26.7 μg/mL in patients with complicated urinary tract infections (cUTI). The area under the curve (AUC) were 257 ± 67.0 μg.h/mL in healthy adults and 226 ± 113 μg.h/mL in cUTI patients.
Plazomicin predominantly undergoes renal excretion, where 56% of the total administered drug was recovered in the urine within 4 hours following a single 15 mg/kg IV dose of radiolabeled plazomicin in healthy subjects. About less than 0.2% and 89.1% of the total drug were recovered within 168 hours in feces and urine, respectively.
The mean (±SD) volume of distribution is 17.9 (±4.8) L in healthy adults and 30.8 (±12.1) L in cUTI patients.
Following administration of 15 mg/kg plazomicin by 30-minute IV infusion, the mean (±SD) total body clearance in healthy adults and cUTI patients is 4.5 (±0.9) and 5.1 (±2.01) L/h, respectively.
Metabolism / Metabolites
Plazomicin is not reported to undergo significant metabolism.
Biological Half-Life
The mean (±SD) half-life of plazomicin was 3.5 h (±0.5) in healthy adults with normal renal function receiving 15 mg/kg plazomicin via intravenous infusion.
Toxicity/Toxicokinetics
Hepatotoxicity
Intravenous therapy with plazomicin has been linked to only rare instances of serum enzyme elevations (
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Plazomicin is an aminoglycoside antibiotic similar to gentamicin and amikacin. No information is available on the use of plazomicin during breastfeeding. However, based on the excretion of other aminoglycoside antibiotics, amounts in milk are expected to be low. Monitor the infant for possible effects on the gastrointestinal flora, such as diarrhea, candidiasis (e.g., thrush, diaper rash) or rarely, blood in the stool indicating possible antibiotic-associated colitis.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
The extent of plasma protein binding in humans is approximately 20%. The degree of protein binding was concentration-independent across the range tested in vitro (5 to 100 mcg/mL).
References
:2010 Nov;54(11):4636-42;2015 Oct;59(10):5959-66.
Additional Infomation
Developed by Achaogen biopharmaceuticals, plazomicin is a next-generation aminoglycoside synthetically derived from [DB12604]. The structure of plazomicin was established via appending hydroxylaminobutyric acid to [DB12604] at position 1 and 2-hydroxyethyl group at position 6'. It was designed to evade all clinically relevant aminoglycoside-modifying enzymes, which contribute to the main resistance mechanism for aminoglycoside therapy. However, acquired resistance of aminoglycosides may arise through over expression of efflux pumps and ribosomal modification by bacteria, which results from amino acid or rRNA sequence mutations. Like other aminoglycosides, plazomicin is ineffective against bacterial isolates that produce 16S rRNA methyltransferases. Plazomicin mediates the antibacterial activity against pathogens including carbapenem-resistant (CRE) and extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae. It mediates the antibacterial activity by binding to bacterial 30S ribosomal subunit and inhibiting protein synthesis. On June 28th, 2018, plazomicin sulfate was approved by the FDA for use in adult patients for the treatment of complicated urinary tract infections (cUTI) including Pyelonephritis. It is marketed as Zemdri and is administered via once-daily intravenous infusion.
Plazomicin is a parenterally administered, broad spectrum aminoglycoside antibiotic typically used for moderate-to-severe urinary tract infections or pyelonephritis. Plazomicin has had limited clinical use but has not been linked to serum enzyme elevations during therapy or to instances of clinically apparent liver injury.
See also: Plazomicin Sulfate (is active moiety of).
Drug Indication
Plazomicin is indicated for the treatment of patients 18 years of age or older with Complicated Urinary Tract Infections (cUTI) including Pyelonephritis, who have limited or no alternative treatment options. It should only be used to treat infections that are proven or strongly suspected to be caused by susceptible microorganisms.
FDA Label
Mechanism of Action
Plazomicin exerts a bactericidal action against susceptible bacteria by binding to bacterial 30S ribosomal subunit. Aminoglycosides typically bind to the ribosomal aminoacyl-tRNA site (A-site) and induce a conformational change to further facilitate the binding between the rRNA and the antibiotic. This leads to codon misreading and mistranslation of mRNA during bacterial protein synthesis. Plazomicin demonstrates potency against _Enterobacteriaceae_, including species with multidrug-resistant phenotypes such as carbapenemase-producing bacteria and isolates with resistance to all other aminoglycosides. Its antibacterial activity is not inhibited by aminoglycoside modifying enzymes (AMEs) produced by bacteria, such as acetyltransferases (AACs), phosphotransferases (APHs), and nucleotidyltransferases (ANTs). Plazomicin was shown to be effective against _Enterobacteriaceae_ in presence of some beta-lactamases. In clinical settings and _in vivo_, bacteria shown to be susceptible toward plazomicin include _Escherichia_ _coli_, _Klebsiella pneumoniae_, _Proteus mirabilis_, and _Enterobacter cloacae_. Other aerobic bacteria that may be affected by plazomicin are _Citrobacter freundii_, _Citrobacter koseri_, _Enterobacter aerogenes_, _Klebsiella oxytoca_, _Morganella morganii_, _Proteus vulgaris_, _Providencia stuartii_, and _Serratia marcescens_.
Pharmacodynamics
Plazomicin exerts its antibacterial activity in a dose-dependent manner with a post-antibiotic effect ranging from 0.2 to 2.6 hours at 2X MIC against _Enterobacteriaceae_, as demonstrated by _in vitro_ studies. In clinical trials comprising of hospitalized adult patients with cUTI (including pyelonephritis), resolution or improvement of clinical cUTI symptoms and a microbiological outcome of eradication were observed at day 5 following the first dose administration of plazomicin. Plazomicin has shown to elicit nephrotoxic, ototoxic, and neuromuscular blocking effects. In clinical trials, it did not induce any clinically relevant QTc-prolonging effects.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H48N6O10
Molecular Weight
592.69
Exact Mass
592.343
CAS #
1154757-24-0
Related CAS #
1154757-24-0 (free);1380078-95-4 (sulfate);
PubChem CID
42613186
Appearance
Typically exists as solid at room temperature
LogP
-6.2
Hydrogen Bond Donor Count
11
Hydrogen Bond Acceptor Count
15
Rotatable Bond Count
13
Heavy Atom Count
41
Complexity
873
Defined Atom Stereocenter Count
12
SMILES
C[C@]1(O)CO[C@H](O[C@H]2[C@H](NC([C@@H](O)CCN)=O)C[C@H](N)[C@@H](O[C@@H]3[C@H](N)CC=C(O3)CNCCO)[C@@H]2O)[C@H](O)[C@H]1NC
InChi Key
IYDYFVUFSPQPPV-PEXOCOHZSA-N
InChi Code
InChI=1S/C25H48N6O10/c1-25(37)11-38-24(18(35)21(25)29-2)41-20-15(31-22(36)16(33)5-6-26)9-14(28)19(17(20)34)40-23-13(27)4-3-12(39-23)10-30-7-8-32/h3,13-21,23-24,29-30,32-35,37H,4-11,26-28H2,1-2H3,(H,31,36)/t13-,14+,15-,16+,17+,18-,19-,20+,21-,23-,24-,25+/m1/s1
Chemical Name
D-Streptamine, O-2-amino-2,3,4,6-tetradeoxy-6-((2-hydroxyethyl)amino)-alpha-D-glycero- hex-4-enopyranosyl-(1->4)-O-(3-deoxy-4-C-methyl-3-(methylamino)-beta-L- arabinopyranosyl-(1->6))-N(sup 1)-((2S)-4-amino-2-hydroxy-1-oxobutyl)-2-deoxy-
Synonyms
ACHN490; ACHN-490; Trade name: Zemdri
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 10 mM
Water:N/A
Ethanol:N/A
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6872 mL 8.4361 mL 16.8722 mL
5 mM 0.3374 mL 1.6872 mL 3.3744 mL
10 mM 0.1687 mL 0.8436 mL 1.6872 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Plazomicin

    Representative results using the double-disk synergy test with two different carbapenem-resistant A. baumannii isolates: HCSC-Ab102 (AandB)andHCSC-Ab113 (CandD).The synergistic effects of amikacin (AandC)andplazomicin (BandD) can be observed, as well as carbapenem heteroresistance inhibition.2015 Oct;59(10):5959-66.

  • Plazomicin

    Antimicrobialsynergy of aminoglycosidesandcolistin for 2 carbapenem-resistant A. baumannii isolates: HCSC-Ab113 (amikacin [A]andplazomicin [B])andHCSC-Ab102 (amikacin [C]andplazomicin [D]). PZ, plazomicin; AK, amikacin; COL, colistin.2015 Oct;59(10):5959-66.

Contact Us