Size | Price | Stock | Qty |
---|---|---|---|
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
PF-04217903 phenolsulfonate is a novel, highly potent and ATP-competitive inhibitor of c-Met kinase inhibitor with Ki of 4.8 nM for human c-Met and has antiangiogenic properties.
Targets |
human c-Met (Ki = 4.8 nM)
|
---|---|
ln Vitro |
PF-04217903 phenolsulfonate (0.1-10000 nM; 48-72 hours) inhibits the growth of c-Met–amplified human GTL-16 gastric carcinoma and H1993 NSCLC cells IC50 values of 12 and 30 nM, respectively[1].
PF-04217903 phenolsulfonate (1.5-3333 nM; 48 hours) causes GTL-16 cells to undergo apoptosis (IC50=31 nM)[1]. PF-04217903 phenolsulfonate also has IC50 values comparable to those for inhibiting c-Met phosphorylation in these cell lines (IC50=7-12.5 nM), which means it inhibits HGF-mediated cell migration and Matrigel invasion in a number of c-Met-overexpressing tumor cell lines, including human NCI-H441 lung carcinoma and HT29 colon carcinoma[1]. PF-04217903 phenolsulfonate has an IC50 of 3.1 nM, 6.4 nM, and 6.7 nM, respectively, showing comparable potency to inhibit the activity of c-Met-H1094R, c-Met-R988C, and c-Met-T1010I. A c-Met-Y1230C IC50 of >10 μM indicates that PF-04217903 phenolsulfonate exhibits no inhibitory activity[3]. |
ln Vivo |
Phenolsulfonate (PF-04217903; p.o., 1–30 mg/kg; daily for 16 days) inhibits tumor growth in a dose-dependent manner, and this effect is correlated with the tumors' decreased c-Met phosphorylation[1].
PF-04217903 phenolsulfonate (5-50 mg/kg, p.o.; once daily for 3 days) induces apoptosis (cleaved caspase-3) in U87MG xenograft tumors at all dose levels while dose-dependently inhibiting phosphorylation of c-Met, Gab-1, Erk1/2, and AKT. In both the GTL-16 and U87MG models, PF-04217903 phenolsulfonate significantly and dose-dependently lowers human IL-8 levels, and in the GTL-16 model, it lowers human VEGFA levels. In U87MG xenograft tumors, PF-04217903 phenolsulfonate significantly increases phospho-PDGFRβ levels[1]. |
Enzyme Assay |
Biochemical kinase assays[1]
c-Met catalytic activity was quantified using a continuous-coupled spectrophotometric assay in which the time-dependent production of ADP by c-Met was determined by analysis of the rate of consumption of NADH. NADH has a measurable absorbance at 340 nm and its consumption was measured by a decrease in absorbance at 340 nm as measured by spectrophotometry at designated time points. To determine Ki values, PF-04217903 was introduced into test wells at various concentrations in the presence of assay reagents and incubated for 10 minutes at 37°C. The assay was initiated by addition of the c-Met enzyme. Cellular kinase phosphorylation ELISA assays[1] Cells were seeded in 96-well plates in media supplemented with 10% FBS and transferred to serum-free media with 0.04% bovine serum albumin (BSA) after 24 hours. In experiments investigating ligand-dependent RTK phosphorylation, corresponding growth factors were added for up to 20 minutes. After incubation of cells with PF-04217903 for 1 hour and/or appropriate ligands, protein lysates were generated from cells. Total tyrosine phosphorylation of selected protein kinases was assessed by the standard sandwich ELISA method. Biochemical Kinase Assays[2] c-MET enzyme inhibition was measured by a continuous coupled spectrophotometric assay as previously described. The assay monitored ATP consumption coupled to oxidation of NADH (measured at 340 nm) while regenerating ATP in the presence of phosphoenol pyruvate (PEP) and coupling enzymes, pyruvate kinase (PK), and lactic dehydrogenase (LDH). Assay reactions contained 0.30 mM ATP (4Km), 0.5 mM Met2 peptide (Ac-ARDMYDKEYYSVHNK), 20 mM MgCl2, 1 mM PEP, 330 μM NADH, 2 mM DTT, 15 units/mL LDH, 15 units/mL PK, test compound (1% DMSO final) in 100 mM HEPES, pH 7.5, 37 °C, and the reactions were initiated by adding 50 nM c-Met N-terminal His6-tagged recombinant human enzyme, aa residues 974–1390. The inhibitors were shown to be ATP-competitive from kinetic and crystallographic studies, and the dose–response data were fit to the equation for competitive inhibition by the method of nonlinear least-squares. Cellular Kinase Phosphorylation ELISA Assays[2] All experiments were done under standard conditions (37 °C and 5% CO2). IC50 values were calculated by concentration–response curve fitting using a Microsoft Excel-based four-parameter method. Cells were seeded in 96-well plates in media supplemented with 10% fetal bovine serum (FBS) and transferred to serum-free media [with 0.04% bovine serum albumin (BSA)] after 24 h. In experiments investigating ligand-dependent RTK phosphorylation, corresponding growth factors were added for up to 20 min. After incubation of cells with an inhibitor for 1 h and/or appropriate ligands for the designated times, cells were washed once with HBSS supplemented with 1 mmol/L Na3VO4, and protein lysates were generated from cells. Subsequently, phosphorylation of selected protein kinases was assessed by a sandwich ELISA method using specific capture antibodies used to coat 96-well plates and a detection antibody specific for phosphorylated tyrosine residues. Antibody-coated plates were (a) incubated in the presence of protein lysates at 4 °C overnight; (b) washed seven times in 1% Tween 20 in PBS; (c) incubated in a horseradish peroxidase-conjugated anti-total-phosphotyrosine (PY-20) antibody (1:500) for 30 min; (d) washed seven times again; (e) incubated in 3,3,5,5-tetramethylbenzidine peroxidase substrate (Bio-Rad) to initiate a colorimetric reaction that was stopped by adding 0.09 N H2SO4; and (f) measured for absorbance in 450 nm using a spectrophotometer. The A549 cell line was used for the c-MET cellular kinase phosphorylation ELISA assay. Human Microsomal Stability Studies[2] Compounds (1 μM) were incubated at 37 °C for 30 min in a final volume of 200 μL of 100 mM potassium phosphate buffer (pH 7.4) containing pooled human liver microsomes (0.8 mg/mL protein) and 2 mM NADPH. Reactions were initiated with the addition of NADPH following a 10-min preincubation. Aliquots of incubation samples were protein precipitated with cold methanol containing 0.1 μM buspirone (internal standard) and centrifuged, and supernatants were analyzed by LC-MS/MS. All incubations were performed in triplicate, and the percent remaining of parent drug at the end of incubation was determined by LC-MS/MS peak area ratio. |
Cell Assay |
Cell Line: GTL-16, H1993 cells
Concentration: 0.1, 1, 10, 100, 1000, 10000 nM Incubation Time: 48-72 hours Result: Inhibited proliferation of c-Met–amplified human GTL-16 gastric carcinoma and H1993 NSCLC cells with IC50 values of 12 and 30 nM, respectively. |
Animal Protocol |
Female nu/nu mice (GTL-16 xenograft model)
1, 3, 10, 30 mg/kg
Oral; daily for 16 days
Subcutaneous xenograft models in athymic mice.[1] Tumor cells were implanted subcutaneously into the right flank region of each mouse and allowed to grow to the designated size. The athymic mice bearing established tumors were administered PF-04217903 either by oral gavage in 0.5% methylcellulose suspension or by implanting a mini Alzet-pump carrying the drug solution. Tumor volume was measured using electronic digital calipers. Percent (%) inhibition values were calculated as: 100 × {1 − [(treatedfinal day − treatedday 1)/(controlfinal day − controlday 1)]}. Tumor volumes were analyzed using one-way ANOVA. At the end of study, mice were humanely euthanized and tumors were resected. Proteins were extracted from the tumor samples and protein concentrations were determined using a BSA assay (Pierce). The level of proteins of interest in the tumor sample was determined using a capture ELISA method or immunoblotting. |
References |
|
Additional Infomation |
2-[4-[3-(6-quinolinylmethyl)-5-triazolo[4,5-b]pyrazinyl]-1-pyrazolyl]ethanol is a member of quinolines.
PF-04217903 has been used in trials studying the treatment of Neoplasms. MET Tyrosine Kinase Inhibitor PF-04217903 is an orally bioavailabe, small-molecule tyrosine kinase inhibitor with potential antineoplastic activity. MET tyrosine kinase inhibitor PF-04217903 selectively binds to and inhibits c-Met, disrupting the c-Met signaling pathway, which may result in the inhibition of tumor cell growth, migration and invasion of tumor cells, and the induction of death in tumor cells expressing c-Met. The receptor tyrosine kinase c-Met, also known as hepatocyte growth factor (HGF) receptor, is overexpressed or mutated in many tumor cell types, playing an important role in tumor cell proliferation, survival, invasion, and metastasis and angiogenesis. The c-Met pathway has been implicated in a variety of human cancers for its critical role in tumor growth, invasion, and metastasis. PF-04217903 is a novel ATP-competitive small-molecule inhibitor of c-Met kinase. PF-04217903 showed more than 1,000-fold selectivity for c-Met compared with more than 150 kinases, making it one of the most selective c-Met inhibitors described to date. PF-04217903 inhibited tumor cell proliferation, survival, migration/invasion in MET-amplified cell lines in vitro, and showed marked antitumor activity in tumor models harboring either MET gene amplification or a hepatocyte growth factor (HGF)/c-Met autocrine loop at well-tolerated dose levels in vivo. Antitumor efficacy of PF-04217903 was dose-dependent and showed a strong correlation with inhibition of c-Met phosphorylation, downstream signaling, and tumor cell proliferation/survival. In human xenograft models that express relatively high levels of c-Met, complete inhibition of c-Met activity by PF-04217903 only led to partial tumor growth inhibition (38%-46%) in vivo. The combination of PF-04217903 with Recepteur d'origine nantais (RON) short hairpin RNA (shRNA) knockdown in the HT29 model that also expresses activated RON kinase-induced tumor cell apoptosis and resulted in enhanced antitumor efficacy (77%) compared with either PF-04217903 (38%) or RON shRNA alone (56%). PF-04217903 also showed potent antiangiogenic properties in vitro and in vivo. Furthermore, PF-04217903 strongly induced phospho-PDGFRβ (platelet-derived growth factor receptor) levels in U87MG xenograft tumors, indicating a possible oncogene switching mechanism in tumor cell signaling as a potential resistance mechanism that might compromise tumor responses to c-Met inhibitors. Collectively, these results show the use of highly selective inhibition of c-Met and provide insight toward targeting tumors exhibiting different mechanisms of c-Met dysregulation.[1] The c-MET receptor tyrosine kinase is an attractive oncology target because of its critical role in human oncogenesis and tumor progression. An oxindole hydrazide hit 6 was identified during a c-MET HTS campaign and subsequently demonstrated to have an unusual degree of selectivity against a broad array of other kinases. The cocrystal structure of the related oxindole hydrazide c-MET inhibitor 10 with a nonphosphorylated c-MET kinase domain revealed a unique binding mode associated with the exquisite selectivity profile. The chemically labile oxindole hydrazide scaffold was replaced with a chemically and metabolically stable triazolopyrazine scaffold using structure based drug design. Medicinal chemistry lead optimization produced 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (2, PF-04217903), an extremely potent and exquisitely selective c-MET inhibitor. 2 demonstrated effective tumor growth inhibition in c-MET dependent tumor models with good oral PK properties and an acceptable safety profile in preclinical studies. 2 progressed to clinical evaluation in a Phase I oncology setting.[2] |
Molecular Formula |
C19H16N8O
|
---|---|
Molecular Weight |
372.383341789246
|
Exact Mass |
372.145
|
Elemental Analysis |
C, 54.94; H, 4.06; N, 20.50; O, 14.64; S, 5.87
|
CAS # |
1159490-85-3
|
Related CAS # |
PF-04217903;956905-27-4;PF-04217903 mesylate;956906-93-7
|
PubChem CID |
17754438
|
Appearance |
Solid powder
|
LogP |
1.673
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
28
|
Complexity |
524
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C1=CC2=C(C=CC(=C2)CN3C4=NC(=CN=C4N=N3)C5=CN(N=C5)CCO)N=C1
|
InChi Key |
PDMUGYOXRHVNMO-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C19H16N8O/c28-7-6-26-12-15(9-22-26)17-10-21-18-19(23-17)27(25-24-18)11-13-3-4-16-14(8-13)2-1-5-20-16/h1-5,8-10,12,28H,6-7,11H2
|
Chemical Name |
2-[4-[3-(quinolin-6-ylmethyl)triazolo[4,5-b]pyrazin-5-yl]pyrazol-1-yl]ethanol
|
Synonyms |
PF-04217903 phenolsulfonate; PF 04217903 phenolsulfonate; PF04217903 phenolsulfonate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6854 mL | 13.4271 mL | 26.8543 mL | |
5 mM | 0.5371 mL | 2.6854 mL | 5.3709 mL | |
10 mM | 0.2685 mL | 1.3427 mL | 2.6854 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00706355 | Terminated | Drug: PF-04217903 | Neoplasms | Pfizer | August 2008 | Phase 1 |