Size | Price | Stock | Qty |
---|---|---|---|
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
ln Vitro |
Peroxidases are a broad family of isoenzymes that are present in nearly all living things. These enzymes usually have molecular weights between 35 and 100 Kd and contain heme. Compared to plant peroxidases, mammalian peroxidases are substantially bigger proteins (576-738 amino acids). Peroxidase's gene sites vary across chromosomes, and the enzyme can exist in monomers, dimers, or tetramers. In certain organs, tissues, cells, and sub-cells, peroxidase exhibits certain distribution patterns and carries out particular functions [1].
|
---|---|
References | |
Additional Infomation |
Mocetinostat has been used in trials studying the treatment of Lymphoma, Urothelial Carcinoma, Relapsed and Refractory, Myelodysplastic Syndrome, and Metastatic Leiomyosarcoma, among others.
Mocetinostat is a rationally designed, orally available, Class 1-selective, small molecule, 2-aminobenzamide HDAC inhibitor with potential antineoplastic activity. Mocetinostat binds to and inhibits Class 1 isoforms of HDAC, specifically HDAC 1, 2 and 3, which may result in epigenetic changes in tumor cells and so tumor cell death; although the exact mechanism has yet to be defined, tumor cell death may occur through the induction of apoptosis, differentiation, cell cycle arrest, inhibition of DNA repair, upregulation of tumor suppressors, down regulation of growth factors, oxidative stress, and autophagy, among others. Overexpression of Class I HDACs 1, 2 and 3 has been found in many tumors and has been correlated with a poor prognosis. Mechanism of Action Mocetinostat is a novel isotypic-selective inhibitor of the enzyme histone deacetylase (HDAC). HDAC inhibitors act by turning on tumour suppressor genes that have been inappropriately turned off. Tumour suppressor genes are a natural defense against cancer. It is therefore hypothesized that specifically inhibiting those HDACs involved in cancer with Mocetinostat may restore normal cell function and reduce or inhibit tumour growth. Pharmacodynamics All HDAC inhibitors induce histone H3 hyperacetylation, correlating with inhibition of proliferation, induction of cell differentiation and apoptosis. |
Molecular Formula |
C23H20N6O
|
---|---|
Molecular Weight |
396.4445
|
Exact Mass |
50
|
CAS # |
9003-99-0
|
PubChem CID |
9865515
|
Appearance |
Yellow to brown solid powder
|
Density |
1.7±0.1 g/cm3
|
Boiling Point |
78.5ºC
|
Melting Point |
-114.1ºC
|
Index of Refraction |
1.376
|
LogP |
0.03
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
30
|
Complexity |
538
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
HRNLUBSXIHFDHP-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H20N6O/c24-19-5-1-2-6-21(19)28-22(30)17-9-7-16(8-10-17)14-27-23-26-13-11-20(29-23)18-4-3-12-25-15-18/h1-13,15H,14,24H2,(H,28,30)(H,26,27,29)
|
Chemical Name |
N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl]benzamide
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~33.33 mg/mL
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.5224 mL | 12.6122 mL | 25.2245 mL | |
5 mM | 0.5045 mL | 2.5224 mL | 5.0449 mL | |
10 mM | 0.2522 mL | 1.2612 mL | 2.5224 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.