yingweiwo

Padeliporfin (WST-11)

Alias: padeliporfin; Padeliporfin [INN]; EEO29FZT86; WST11 compound; Stakel; WST-11; UNII-EEO29FZT86; WST 1;
Cat No.:V8828 Purity: ≥98%
Padeliporfin (formerly known as WST-11) is novel and potent vascular-acting photosensitizer with potential antineoplastic activity.
Padeliporfin (WST-11)
Padeliporfin (WST-11) Chemical Structure CAS No.: 759457-82-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Padeliporfin (formerly known as WST-11) is novel and potent vascular-acting photosensitizer with potential antineoplastic activity. It is composed of a water-soluble, palladium-substituted bacteriochlorophyll analogue. Paldeliporfin is activated locally upon administration, when the tumor bed is exposed to low-power laser light; reactive oxygen species (ROS) are formed upon activation and ROS-mediated necrosis may occur at the site of interaction between the photosensitizer, light and oxygen. Vascular-targeted photodynamic therapy (VTP) with padeliporfin may allow tumor-site specific cytotoxicity while sparing adjacent normal tissues. (NCI Thesaurus).

Biological Activity I Assay Protocols (From Reference)
Targets
vascular-acting photosensitizer
ln Vitro
Padeliporfin mediates tumour-specific cytotoxicity. It works to destroy target cells through the release of reactive oxygen species in response to an exposure to laser light radiation delivered at a specific wavelength. Padeliporfin causes vascular shutdown and activation of an immune response in the target tissue.
ln Vivo
In preclinical studies in animal models, padeliporfin-mediated photosensitization caused occlusion of the full tumour vasculature in a few minutes of treatment. Padeliporfin remains confined within the circulation even at high doses with minimal extravasation: reactive oxygen species generated upon laser activation are contained in the vasculature and do not directly kill tumour cells.
In the intention-to-treat population (n=81), the proportion of patients with negative biopsies at month 12 was 74% (60/81 patients; 95% CI: 63.1%,83.2%). In the per-protocol population, the proportion was 79% (58/73 patients; 95% CI: 68.4%,88.0%). Questionnaire results indicated a slight improvement in urinary function and limited deterioration in sexual function. No difference in QoL was observed over time. A total of 42/81 (52%) patients reported mild or moderate and 4 of 81 (4.9%) experienced serious AE, all resolved without sequelae. No phototoxicity, cardiovascular event, fistula or prolonged urinary incontinence, secondary cancer or death was reported. Conclusions: Results support the efficacy, safety, and QoL associated with padeliporfin focal treatment for low/intermediate risk localized PCa.[1]
Animal Protocol
Objectives: To explore the proportion of patients with higher risk localized prostate cancer (PCa) that would become safely biopsy negative 12 months after non-thermal focal therapy with padeliporfin vascular-targeted photodynamic therapy (VTP). Methods: Multicenter study in a scenario of prostate-specific antigen (PSA) ≤20ng/ml and variable PCa target volumes Gleason pattern 3 or low-volume secondary Gleason pattern 4, all patients received VTP, consisting of intravenous 4mg/kg padeliporfin activated by light-diffusing fibers in the prostate. The prostate was biopsied at baseline, months 6 and 12, PSA, patient-reported functional outcomes and quality of life (QoL) questionnaires were recorded at baseline, months 3, 6, and 12 and adverse events (AE) throughout the study.[1]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
After intravenous bolus injection at a dose of 6 mg/kg into healthy mice, the Cmax of padeliporfin was about 52 mg/L, with a Tmax of two minutes.
In healthy subjects, urinary excretion of padeliporfin was very low, accounting for less than 0.2% of the dose. Fecal elimination is a suspected predominant route of elimination.
In healthy men receiving 1.25 to 15 mg/kg of padeliporfin di-potassium, the mean volume of distribution (Vd) ranged from 0.064 to 0.279 L/kg. In patients with localized prostate cancer treated with 2 and 4 mg/kg of padeliporfin di-potassium, the mean Vd ranged from 0.09 to 0.10 L/kg. Upon administration, padeliporfin remain confined within the circulation even at high doses, with minimal extravasation to other tissues.
Following administration of 1.25-15 mg/kg of padeliporfin di-potassium in healthy men, clearance of padeliporfin di-potassium ranged from 0.0245 to 0.088 L/h/kg. In patients with localised prostate cancer treated with 4 mg/kg and 2 mg/kg of padeliporfin di-potassium, clearance was 0.04 L/h/kg and 0.06 L/h/kg, respectively.
Metabolism / Metabolites
In human liver microsomes and S9 fractions, padeliporfin underwent minimal metabolism. No metabolites of padeliporfin have been identified yet as a radiolabeled study has not been performed.
Biological Half-Life
The estimated half-life is 1.19 hrs ± 0.08 at 4 mg/kg of padeliporfin di-potassium.
Toxicity/Toxicokinetics
Protein Binding
Padeliporfin di-potassium is 99% bound to human plasma proteins. Padeliporfin binds to high-density proteins, including serum albumin, but binds poorly to low-level density lipoproteins and high-density lipoproteins.
References
[1]. Expanding indication of padeliporfin (WST11) vascular-targeted photodynamic therapy: results of prostate cancer Latin-American multicenter study. Actas Urol Esp (Engl Ed) . 2018 Dec;42(10):632-638.
Additional Infomation
Padeliporfin is a water-soluble chlorophyll derivative and cytotoxic photosensitizer used for vascular-targeted photodynamic therapy for malignancies. Vascular-targeted photodynamic therapy (VTP), or vascular targeted photochemotherapy, is a focal treatment for localized prostate cancer. It aims to destroy only cancerous lesions of the prostate, rather than ablating the entire prostate gland. Padeliporfin was first approved by the European Commission on November 10, 2017, for the treatment of low-risk prostate cancer in adults meeting certain clinical criteria.
Padeliporfin is a vascular-acting photosensitizer consisting of a water-soluble, palladium-substituted bacteriochlorophyll derivative with potential antineoplastic activity. Upon administration, paldeliporfin is activated locally when the tumor bed is exposed to low-power laser light; reactive oxygen species (ROS) are formed upon activation and ROS-mediated necrosis may occur at the site of interaction between the photosensitizer, light and oxygen. Vascular-targeted photodynamic therapy (VTP) with padeliporfin may allow tumor-site specific cytotoxicity while sparing adjacent normal tissues.
Drug Indication
Padeliporfin is indicated for the treatment of adults with previously untreated, unilateral, low-risk, adenocarcinoma of the prostate with a life expectancy greater than or equal to 10 years. Patients must meet the following criteria: clinical stage T1c or T2a; Gleason Score ≤ 6, based on high-resolution biopsy strategies; PSA ≤ 10 ng/mL; and 3 positive cancer cores with a maximum cancer core length of 5 mm in any one core or 1-2 positive cancer cores with ≥ 50 % cancer involvement in any one core or a PSA density ≥ 0.15 ng/mL/cm3.
Tookad is indicated as monotherapy for adult patients with previously untreated, unilateral, low risk, adenocarcinoma of the prostate with a life expectancy ≥ 10 years and: Clinical stage T1c or T2a; Gleason Score ≤ 6, based on high-resolution biopsy strategies; PSA ≤ 10 ng/mL; 3 positive cancer cores with a maximum cancer core length of 5 mm in any one core or 1-2 positive cancer cores with ≥ 50 % cancer involvement in any one core or a PSA density ≥ 0. 15 ng/mL/cm³.
Mechanism of Action
Vascular-targeted photodynamic therapy (VTP), or vascular targeted photochemotherapy, is a focal treatment for localized prostate cancer. VTP involves the process of light activation of photosensitizer localized in the target tissue, which produces reactive oxygen species that work to destroy target cells. Padeliporfin is retained within the vascular system. When activated with 753 nm wavelength laser light, padeliporfin triggers a photochemical reaction that generates oxygen radicals (hydroxyl radical, superoxide radical), thereby causing local hypoxia of the target tissue. Nitric oxide radicals are also released, resulting in transient arterial vasodilatation that triggers the release of the vasoconstrictor, endothelin-1. Rapid consumption of the nitric oxide radicals by oxygen radicals leads to the formation of reactive nitrogen species (RNS) including peroxynitrite, in parallel to arterial constriction. Impaired deformability enhances erythrocyte aggregability and formation of blood clots at the interface of the arterial supply of the target tissue, leading to occlusion of the tumour vasculature, or "vascular shutdown." This effect is enhanced by RNS-induced endothelial cell apoptosis and initiation of self-propagated tumour cells necrosis through peroxidation of their membrane.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C37H43N5O9S-2.PD+2
Molecular Weight
840.250420000001
Exact Mass
837.166
Elemental Analysis
C, 48.49; H, 4.51; K, 8.53; N, 7.64; O, 15.71; Pd, 11.61; S, 3.50
CAS #
759457-82-4
Related CAS #
759457-82-4; 698393-30-5 (potassium);
PubChem CID
145712321
Appearance
Typically exists as solid at room temperature
LogP
1.595
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
13
Rotatable Bond Count
10
Heavy Atom Count
53
Complexity
1870
Defined Atom Stereocenter Count
4
SMILES
[Pd+2].OC(CC[C@H]1[C@H](C)C2=NC1=C(C1[N-]C(C=C3N=C(C=C4[N-]C(=C2)C(C)=C4C(=O)C)[C@H](C)[C@H]3CC)=C(C)C=1C(NCCS(=O)(O)=O)=O)CC(OC)=O)=O
InChi Key
MZRDSGWDVDESRC-VNWQTDIGSA-J
InChi Code
InChI=1S/C37H45N5O9S.Pd/c1-8-22-17(2)25-16-30-33(21(6)43)19(4)27(40-30)14-26-18(3)23(9-10-31(44)45)35(41-26)24(13-32(46)51-7)36-34(37(47)38-11-12-52(48,49)50)20(5)28(42-36)15-29(22)39-25;/h14-18,22-23H,8-13H2,1-7H3,(H5,38,39,40,41,42,43,44,45,47,48,49,50);/q;+2/p-4/t17-,18+,22-,23+;/m1./s1
Chemical Name
3-[(2S,3S,12R,13R)-8-acetyl-13-ethyl-20-(2-methoxy-2-oxoethyl)-3,7,12,17-tetramethyl-18-(2-sulfonatoethylcarbamoyl)-2,3,12,13-tetrahydroporphyrin-22,24-diid-2-yl]propanoate;palladium(2+)
Synonyms
padeliporfin; Padeliporfin [INN]; EEO29FZT86; WST11 compound; Stakel; WST-11; UNII-EEO29FZT86; WST 1;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1901 mL 5.9506 mL 11.9012 mL
5 mM 0.2380 mL 1.1901 mL 2.3802 mL
10 mM 0.1190 mL 0.5951 mL 1.1901 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us