yingweiwo

PACAP-38 (31-38), human, mouse, rat

Cat No.:V33023 Purity: ≥98%
PACAP-38 (31-38), human, mouse, rat is a PAC1 receptor agonist/activator that increases α-secretase activity.
PACAP-38 (31-38), human, mouse, rat
PACAP-38 (31-38), human, mouse, rat Chemical Structure CAS No.: 138764-85-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
PACAP-38 (31-38), human, mouse, rat is a PAC1 receptor agonist/activator that increases α-secretase activity. PACAP-38 (31-38), human, mouse, rat increases cytoplasmic Ca2+, increases the proliferation and phosphorylation of extracellular regulated kinase (ERK) and epidermal growth factor receptor (EGFR). PACAP-38 (31-38), human, mouse, rat, has a potent and sustained stimulating effect on sympathetic nerve NPY and catecholamine production. PACAP-38 (31-38), human, mouse, rat may be utilized in neurotrophic and neuro-protective (neuro-protection) research.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The human, mouse, dependent PACAP-38 (31-38) causes EGFR, HER2, and ERK tyrosine phosphorylation at 100 nM over a 2-minute period in NCI-H838 cells [1]. Human, mouse, and urine (100 nM; 30 minutes; NCI-H838 cells) treated with PACAP-38 (31-38) causes EGFR tyrosine phosphorylation, generates reactive oxygen species, and raises ROS levels by 51% [1]. NCI-H838 cells are stimulated to grow by PACAP-38 (31-38) PACAP-38 (31-38), human, mouse, and rat (300 nM; 48 hours) [1]. Through cAMP accumulation and an increase in solute free calcium, PACAP-38 (31-38), a human, mouse, toxin (0.01-10 nM; HEK 293 cells), stimulates neuronal expression endogenously. With an EC50 value of 0.81 nM, it inhibits PAC1 entry and causes a dose-dependent increase in intracellular Ca2+ concentration [2]. In SCG neuronal cultures, PACAP-38 (31-38), human, mouse, nozzle (0.01 nM; 48 h) efficiently rescues NPY [3]. PACAP-38 (31-38), Human, Mouse, Accountable (100 nM; 14 d) Generates NPY and catecholamine neurons that are sustainedly rescued [3
Cell Assay
Cell Viability Assay [1]
Cell Types: NCI-H838 Cell
Tested Concentrations: 10 nM
Incubation Duration: 48 hrs (hours)
Experimental Results: NCI-H838 cell number increased by 72%.

Western Blot Analysis[1]
Cell Types: 100 nM
Tested Concentrations: 100 nM
Incubation Duration: 2 minutes
Experimental Results: Tyrosine phosphorylation of EGFR, HER2 and ERK increased by 377%, 299% and 216% respectively.
References

[1]. PAC1 regulates receptor tyrosine kinase transactivation in a reactive oxygen species-dependent manner. Peptides. 2019 Oct;120:170017.

[2]. The neuropeptide PACAP promotes the alpha-secretase pathway for processing the Alzheimer amyloid precursor protein. FASEB J. 2006 Mar;20(3):512-4.

[3]. Pituitary adenylate cyclase-activating polypeptides, PACAP-38 and PACAP-27, regulation of sympathetic neuron catecholamine, and neuropeptide Y expression through activation of type I PACAP/VIP receptor isoforms. Ann N Y Acad Sci. 1996 Dec 26;805:204-16; discussion 217-8.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C47H83N17O11
Molecular Weight
1062.26922
Exact Mass
1061.65
CAS #
138764-85-9
Related CAS #
PACAP-38 (31-38), human, mouse, rat TFA
PubChem CID
139270272
Appearance
White to off-white solid powder
LogP
3.417
Hydrogen Bond Donor Count
17
Hydrogen Bond Acceptor Count
16
Rotatable Bond Count
39
Heavy Atom Count
75
Complexity
1880
Defined Atom Stereocenter Count
0
InChi Key
YJQRDMBVNVOBLN-UHFFFAOYSA-N
InChi Code
InChI=1S/C47H83N17O11/c1-26(2)38(46(75)62-32(12-5-8-22-50)42(71)63-35(25-37(53)67)45(74)58-30(39(54)68)10-3-6-20-48)64-44(73)33(13-9-23-57-47(55)56)60-43(72)34(18-19-36(52)66)61-41(70)31(11-4-7-21-49)59-40(69)29(51)24-27-14-16-28(65)17-15-27/h14-17,26,29-35,38,65H,3-13,18-25,48-51H2,1-2H3,(H2,52,66)(H2,53,67)(H2,54,68)(H,58,74)(H,59,69)(H,60,72)(H,61,70)(H,62,75)(H,63,71)(H,64,73)(H4,55,56,57)
Chemical Name
N-[1-[[1-[[6-amino-1-[[4-amino-1-[(1,6-diamino-1-oxohexan-2-yl)amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]-2-[[6-amino-2-[[2-amino-3-(4-hydroxyphenyl)propanoyl]amino]hexanoyl]amino]pentanediamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~94.14 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9414 mL 4.7069 mL 9.4138 mL
5 mM 0.1883 mL 0.9414 mL 1.8828 mL
10 mM 0.0941 mL 0.4707 mL 0.9414 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us