Size | Price | Stock | Qty |
---|---|---|---|
5g |
|
||
10g |
|
||
Other Sizes |
|
Octanoic acid is a novel and potent antimicrobial agent
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Children who suffer from seizures which are not controllable by drugs have apparently been successfully treated with MCT (medium chain triglyceride) diet. The MCT diet is an emulsion containing primarily (81%) octanoic acid, but also contains 15% decanoic acid. In this study 15 children were receiving 50 to 60% of their energy requirement s from the MCT emulsion. Blood samples were analyzed for decanoic and octanoic acid levels. There was a wide variation in absolute levels, possibly due to poor patient compliance, but all patients showed low levels in the mornings, rising to high levels in the evenings. This suggested that both acids are rapidly metabolized. /Medium chain triglyceride/ To assess the disposition kinetics of selected structural analogs of valproic acid, the pharmacokinetics of valproic acid and 3 structural analogs, cyclohexanecarboxylic acid, l-methyl-l-cyclohexanecarboxylic acid (1-methylcyclohexanecarboxylic acid; and octanoic acid were examined in female rats. All 4 carboxylic acids evidenced dose-dependent disposition. A dose-related decrease in total body clearance was observed for each compound, suggesting saturable eiminination processes. The apparent volume of distribution for these compounds was, with the exception of cyclohexanecarboxylic acid, dose-dependent, indicating that binding to proteins in serum and/or tissues may be saturable. Both valproic acid and 1-methylcyclohexanecarboxylic acid exhibited enterohepatic recirculation, which appeared to be dose- and compound-dependent. Significant quantities of both valproic acid and 1-methylcyclohexanecarboxylic acid were excreted in the urine as conjugates. Octanoic acid and cyclohexanecarboxylic acid were not excreted in the urine and did not evidence enterohepatic recirculation. It was concluded that minor changes in chemical structure of low molecular weight carboxylic acids have an influence on their metabolism and disposition. Metabolism / Metabolites Caprylic acid administered to rats is readily metabolized by the liver and many other tissues, forming carbon dioxide and two-carbon fragments, which are incorporated into long-chain fatty acids, as well as other water-soluble products. The enzyme MCAD (medium-chain acyl-CoA dehydrogenase) is responsible for the dehydrogenation step of fatty acids with chain lengths between 6 and 12 carbons as they undergo beta-oxidation in the mitochondria. Fatty acid beta-oxidation provides energy after the body has used up its stores of glucose and glycogen. This typically occurs during periods of extended fasting or illness when caloric intake is reduced, and energy needs are increased. Beta-oxidation of long chain fatty acids produces two carbon units, acetyl-CoA and the reducing equivalents NADH and FADH2. NADH and FADH2 enter the electron transport chain and are used to make ATP. Acetyl-CoA enters the Krebs Cycle and is also used to make ATP via the electron transport chain and substrate level phosphorylation. When the supply of acetyl-CoA (coming from the beta-oxidation of fatty acids) exceeds the capacity of the Krebs Cycle to metabolize acetyl-CoA, the excess acetyl-CoA molecules are converted to ketone bodies (acetoacetate and beta-hydroxybutyrate) by HMG-CoA synthase in the liver. Ketone bodies can also be used for energy especially by the brain and heart; in fact they become the main sources of energy for those two organs after day three of starvation. (Wikipedia) |
---|---|
Toxicity/Toxicokinetics |
Toxicity Summary
It has been demonstrated that octanoic (OA) and decanoic (DA) acids compromise the glycolytic pathway and citric acid cycle functioning, increase oxygen consumption in the liver and inhibit some activities of the respiratory chain complexes and creatine kinase in rat brain (A15454, A15455). These fatty acids were also shown to induce oxidative stress in the brain (A15456). Experiments suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD. (A15457) Toxicity Data Oral rat LD50: 10080 mg/kg. Intravenous mouse LD50: 600 mg/kg. Skin rabbit LD50: over 5000 mg/kg. Interactions The duration of the absorption-enhancing effect of sodium octanoate (C8), sodium hexanoate (C6) and glyceryl-l-monooctanoate (MO) on the rectal absorption of gentamicin using the hollow-type suppository was investigated in rabbits. To evaluate the duration of the absorption-enhancing effect by pretreatment (treatment of absorption enhancer before gentamicin administration), suppository I containing each absorption enhancer in the cavity was administered into the rectum. Then suppository II containing gentamicin in the cavity was administered at predetermined times 10.33, 2, 6 and 24 hr after the administration of suppository I. Plasma gentamicin levels obtained by the pretreatment with absorption enhancer were compared with those obtained by the simultaneous administration of gentamicin with absorption enhancer. The AUC and Cmax of gentamicin significantly decreased with the pretreatment of C8-16 and 24 hr, C6-12 and 6 hr or glyceryl-l-monooctanoate 16 and 24 hr before rectal gentamicin administration, as compared with the simultaneous administration of gentamicin with C8, C6 or glyceryl-l-monooctanoate. A marked decrease in the absorption-enhancing effect of C8, C6 and glyceryl-l-monooctanoate on rectal gentamicin absorption was observed by the prolongation of the period between the pretreatment of each absorption enhancer and gentamicin administration. The duration of the absorption-enhancing effect of C6 was shorter than that of C8, whereas this duration of glyceryl-l-monooctanoate was similar to that of C8. The effect of these absorption enhancers disappeared 24 hr after the pretreatment. These results suggested that the lowering of the membrane transport barrier function recovered about one day after the administration of C8 or MO. Cytochrome oxidase activity was investigated histochemically in the choroid plexus epithelium. Intense staining for the enzyme was exclusively limited to the mitochondria. Rats treated with octanoic acid displayed extensive ultrastructural disruptions in the epithelial cells of the choroid plexus. Mitochondria were fewer in number and more disrupted compared to the control. The enzyme activity was greatly reduced. However, pretreatment with an equimolar dose of L-carnitine followed by octanoic acid injection produced little alteration of either ultrastructure or enzyme staining. This study suggests that L-carnitine supplementation may restore mitochondrial function of the choroid plexus subjected to toxic organic anions in metabolic disorders, and may be useful in the prevention of metabolic encephalopathy. The effects of sodium caprate and sodium caprylate on transcellular permeation routes were examined in rats. The release of membrane phospholipids was significantly increased only by caprate, while protein release did not change from the control in the presence of caprate or caprylate, indicating that the extent of membrane disruption was insufficient to account for the extent of the enhanced permeation. Using brush border membrane vesicles prepared from colon, with their protein and lipid component labeled by fluorescent probes, the perturbing actions of caprate and caprylate toward the membrane were examined by fluorescence polarization. Caprate interacted with membrane protein and lipids, and caprylate mainly with protein, causing perturbation to the membrane. The release of 5(6)-carboxyfluorescein previously included in brush border membrane vesicles was increased by caprate but not by caprylate ... /Sodium caprylate/ /In the/ Escherichia coli reverse mutation assay ... octanoic acid inhibited the mutagenic activity of N-nitrosodimethylamine in E. coli bacteria and the extent to which this mutagen methylated DNA in cultured calf thymus cells. Non-Human Toxicity Values LD50 Rat oral 1410 mg/kg LD50 Rat oral 14.7 mL/kg /C6 0.5%, C8 97.9%, C10 1.6%, C12 traces/ LD50 Rat gavage 1.41mL (1283 mg)/kg LD50 Rabbit dermal >5000 mg/kg LD50 Rabbit dermal 0.71 mL (647 mg)/kg |
References |
|
Additional Infomation |
Therapeutic Uses
Exptl Use: A simple methodology for hyperimmune horse plasma fractionation, based on caprylic acid precipitation, is described. Optimal conditions for fractionation were studied; the method gives best results when concentrated caprylic acid was added to plasma, whose pH had been adjusted to 5.8, until a final caprylic acid concentration of 5% was reached. The mixture was vigorously stirred during caprylic acid addition and then for 60 min; afterwards the mixture was filtered. Non-immunoglobulin proteins precipitated in these conditions, whereas a highly enriched immunoglobulin preparation was obtained in the filtrate, which was then dialysed to remove caprylic acid before the addition of sodium chloride and phenol. Thus, antivenon was produced after a single precipitation step followed by dialysis. In order to compare this methodology with that based on ammonium sulfate fractionation, a sample of hyperimmune plasma was divided into two aliquots which were fractionated in parallel by both methods. It was found that caprylic acid-fractionated antivenom was superior in terms of yield, production time, albumin/globulin ratio, turbidity, protein aggregates, electrophoretic pattern and neutralizing potency against several activities of Bothrops asper venom. Owing to its efficacy and simplicity, this method could be of great value in antivenom and antitoxin production laboratories. /EXPL THER/ The treatment for patients with genetic disorders of mitochondrial long-chain fatty acid beta-oxidation is directed toward providing sufficient sources of energy for normal growth and development, and at the same time preventing the adverse effects that precipitate or result from metabolic decompensation. Standard of care treatment has focused on preventing the mobilization of lipids that result from fasting and providing medium-chain triglycerides (MCT) in the diet in order to bypass the long-chain metabolic block. MCTs that are currently available as commercial preparations are in the form of even-chain fatty acids that are predominately a mixture of octanoate and decanoate ... The even-numbered medium-chain fatty acids (MCFAs) that are found in MCT preparations can reduce the accumulation of potentially toxic long-chain metabolites of fatty acid oxidation (FAO) ... /Octanoate/ Children who suffer from seizures which are not controllable by drugs have apparently been successfully treated with MCT (medium chain triglyceride) diet. The MCT diet is an emulsion containing primarily (81%) octanoic acid, but also contains 15% decanoic acid ... /Medium chain triglyceride/ |
Molecular Formula |
C8H16O2
|
---|---|
Molecular Weight |
144.21
|
Exact Mass |
144.115
|
CAS # |
124-07-2
|
Related CAS # |
15696-43-2 (unspecified lead salt);16577-52-9 (lithium salt);18312-04-4 (unspecified zirconium salt);1912-83-0 (tin(+2) salt);1984-06-1 (hydrochloride salt);20195-23-7 (unspecified chromium salt);20543-04-8 (unspecified copper salt);2191-10-8 (cadmium salt);3130-28-7 (iron(+3) salt);3890-89-9 (copper(+2) salt);4696-54-2 (barium salt);4995-91-9 (nickel(+2) salt);5206-47-3 (zirconium(+4) salt);557-09-5 (zinc salt);5972-76-9 (ammonium salt);6028-57-5 (aluminum salt);60903-69-7 (La(+3) salt);6107-56-8 (calcium salt);6427-90-3 (chromium(+2) salt);6535-19-9 (unspecified manganese salt);6535-20-2 (unspecified iron salt);6700-85-2 (cobalt salt);67816-08-4 (Ir(+3) salt);68957-64-2 (Ru(+3) salt);7319-86-0 (lead(+2) salt);7435-02-1 (unspecified Ce salt);764-71-6 (potassium salt)
|
PubChem CID |
379
|
Appearance |
Colorless to light yellow liquid
|
Density |
0.91 g/mL at 25 °C(lit.)
|
Boiling Point |
237 ºC
|
Melting Point |
16 °C
|
Flash Point |
130 ºC
|
Vapour Pressure |
0.022mmHg at 25°C
|
Index of Refraction |
n20/D 1.428(lit.)
|
LogP |
2.431
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
10
|
Complexity |
89.3
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCCCCCCC(O)=O
|
InChi Key |
WWZKQHOCKIZLMA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C8H16O2/c1-2-3-4-5-6-7-8(9)10/h2-7H2,1H3,(H,9,10)
|
Chemical Name |
octanoic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 6.9343 mL | 34.6717 mL | 69.3433 mL | |
5 mM | 1.3869 mL | 6.9343 mL | 13.8687 mL | |
10 mM | 0.6934 mL | 3.4672 mL | 6.9343 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT01864525 | Completed | Drug: Octanoic acid Drug: Inactive capsule |
Essential Tremor of Voice Essential Voice Tremor Vocal Tremor Voice Tremor |
Syracuse University | 2013-07 | Phase 1 Phase 2 |
NCT01468948 | Completed | Drug: Octanoic Acid | Essential Tremor | National Institute of Neurological Disorders and Stroke (NINDS) | 2011-10-28 | Phase 1 |
NCT00848172 | Completed | Drug: Octanoic Acid Drug: Placebo |
Essential Tremor | National Institute of Neurological Disorders and Stroke (NINDS) | 2009-02 | Phase 1 Phase 2 |
NCT01244503 | Terminated | Drug: Sodium Octanoate Breath Test | Metabolic Syndrome Nonalcoholic Fatty Liver Disease |
Virginia Commonwealth University | 2011-02 | Phase 2 |
NCT02794805 | Completed | Device: ¹³C-Octanoate Breath Test | Hepatocellular Carcinoma (HCC) | Meridian Bioscience, Inc. | 2015-06 | Phase 2 |