Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ADME/Pharmacokinetics |
Metabolism / Metabolites
Hepatic. Cytochrome P4502D is responsible for the 4-hydroxylation of minaprine to 4-hydroxyminaprine. Minaprine has known human metabolites that include 4-Hydroxyminaprine. |
---|---|
References | |
Additional Infomation |
Minaprine is a member of pyridazines, a secondary amine and a member of morpholines. It has a role as an antidepressant, a serotonin uptake inhibitor, a dopamine uptake inhibitor, a cholinergic drug and an antiparkinson drug.
Minaprine is a psychotropic drug which has proved to be effective in the treatment of various depressive states. Like most antidepressants minaprine antagonizes behavioral despair. Minaprine is an amino-phenylpyridazine antidepressant reported to be relatively free of cardiotoxicity, drowsiness, and weight gain. Drug Indication For the treatment of depression Mechanism of Action Minaprine binds to serotonin type 2 receptors and to dopamine D1 and D2 type receptors. It also binds to the serotonin reuptake pump. Therefore, minaprine blocks the reuptake of both dopamine and serotonin. It is also, to a slight degree, cholinomimetic. Thus it may exhibit both mood-brightening and nootropic properties. It also acts as a reversible inhibitor of MAO-A (RIMA).It has also been found to inhibit acetylcholinesterase. Pharmacodynamics Minaprine is an amino-phenylpyridazine antidepressant reported to be relatively free of cardiotoxicity, drowsiness, and weight gain. Similar to other antidepressant treatments, minaprine attenuates the beta-adrenergic receptor function. Studies have also shown that minaprine improves memory consolidation and that repeated drug administration leads to potentiation of this effect. Moreover, the effects of minaprine on memory consolidation are related to its dopaminergic action. |
Molecular Formula |
C17H22N4O
|
---|---|
Molecular Weight |
298.38278
|
Exact Mass |
298.179
|
CAS # |
25905-77-5
|
Related CAS # |
Minaprine dihydrochloride;25953-17-7
|
PubChem CID |
4199
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.156g/cm3
|
Boiling Point |
531.2ºC at 760 mmHg
|
Melting Point |
122°
|
Flash Point |
275.1ºC
|
Vapour Pressure |
2.29E-11mmHg at 25°C
|
Index of Refraction |
1.595
|
LogP |
3.811
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
22
|
Complexity |
316
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CC1=CC(C2=CC=CC=C2)=NN=C1NCCN3CCOCC3
|
InChi Key |
LDMWSLGGVTVJPG-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C17H22N4O/c1-14-13-16(15-5-3-2-4-6-15)19-20-17(14)18-7-8-21-9-11-22-12-10-21/h2-6,13H,7-12H2,1H3,(H,18,20)
|
Chemical Name |
4-methyl-N-(2-morpholin-4-ylethyl)-6-phenylpyridazin-3-amine
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 35 mg/mL (~117.30 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.3514 mL | 16.7572 mL | 33.5143 mL | |
5 mM | 0.6703 mL | 3.3514 mL | 6.7029 mL | |
10 mM | 0.3351 mL | 1.6757 mL | 3.3514 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.