Metoprolol

Cat No.:V13734 Purity: ≥98%
Metoprolol(Lanoc; Selopral; Ritmolol;Lopressor; Metomerck; Metop; Toprol) is a potent β1 adrenergicreceptor blocker and an approved drug for thetreatment of high blood pressure and chest pain.
Metoprolol Chemical Structure CAS No.: 51384-51-1
Product category: Adrenergic Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
10g
25g
50g
Other Sizes

Other Forms of Metoprolol:

  • Metoprolol Succinate
  • Metoprolol-d7 hydrochloride (Metoprolol-d7 succinate)
  • Metoprolol Tartrate
  • Metoprolol-d7 (Metoprolol d7)
  • (R)-Metoprolol-d7 (Metoprolol d7)
  • (S)-Metoprolol-d7 (Metoprolol d7)
  • Metoprolol-d5 (Metoprolol-d5)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Metoprolol (Lanoc; Selopral; Ritmolol; Lopressor; Metomerck; Metop; Toprol) is a potent β1 adrenergic receptor blocker and an approved drug for the treatment of high blood pressure and chest pain.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Metoprolol (0-1000 μg/mL; 24-72 hours) cytotoxic effects on MOLT-4 and U937 cells are dose- and time-dependent [3].
ln Vivo
In ApoE−/− mice, metoprolol (2.5 mg/kg/h; infusion; 11 weeks) decreases atherosclerosis and pro-inflammatory cytokines [1]. Metoprolol (15 mg/kg/q12h; ig; 5 days) demonstrated antiviral and anti-inflammatory properties in a mouse model of viral myocarditis caused by the coxsackievirus B3 [2]. In rats with coronary microembolism (CME), metoprolol (2.5 mg/kg; intravenous injection; 3 bolus injections) effectively prevented cardiomyocyte death and reduced activated caspase-9 protein expression [4].
Cell Assay
Cytotoxicity assay [3]
Cell Types: U937 and MOLT-4 Cell
Tested Concentrations: 1, 10, 50, 100, 500 and 1000 μg/mL
Incubation Duration: 24, 48 and 72 hrs (hours)
Experimental Results: Dramatically diminished viability of U937 and MOLT -4 Cells incubated at a concentration of 1000 μg/mL (3740.14μM) for 48 hrs (hours) Dramatically diminished the viability of U937 cells after incubation at a concentration of ≥500 μg/ml (≥1870.07μM) for 72 hrs (hours), and Dramatically diminished the viability of U937 cells after incubation for 72 hrs (hours). hrs (hours) later, MOLT4 cell concentration was ≥100 μg/ml (≥374.01μM).
Animal Protocol
Animal/Disease Models: Male ApoE−/− mice [1]
Doses: 2.5 mg/kg/h
Route of Administration: via mini-osmotic pump, 11 weeks
Experimental Results: Thoracic aorta atherosclerotic plaque area Dramatically diminished, serum TNFα and chemokine CXCL1, and diminished macrophage content in plaques.

Animal/Disease Models: Balb/c mouse, coxsackie virus B3 (CVB3)-induced viral myocarditis (VMC) model [2]
Doses: 15 mg/kg/q12h
Route of Administration: po (oral gavage), for 5 days
Experimental Results: CVB3 infection-induced reduction in VMC pathology score protects myocardium from viral damage by reducing serum cTn-I levels. Reduce myocardial pro-inflammatory cytokine levels and increase anti-inflammatory cytokine expression. Myocardial virus titers were Dramatically diminished.
References
[1]. Ulleryd MA, et al. Metoprolol reduces proinflammatory cytokines and atherosclerosis in ApoE-/- mice. Biomed Res Int. 2014;2014:548783.
[2]. Wang D, et al. Carvedilol has stronger anti-inflammation and anti-virus effects than metoprolol in murine model with coxsackievirus B3-induced viral myocarditis. Gene. 2014 Sep 1;547(2):195-201.
[3]. Hajatbeigi B, et al. Cytotoxicity of Metoprolol on Leukemic Cells in Vitro. IJBC 2018; 10(4): 124-129.
[4]. Su Q, et al. Effect of metoprolol on myocardial apoptosis and caspase-9 activation after coronary microembolization in rats. Exp Clin Cardiol. 2013 Spring;18(2):161-5.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H25NO3
Molecular Weight
267.3639
CAS #
51384-51-1
Related CAS #
Metoprolol succinate;98418-47-4;Metoprolol-d7 hydrochloride;1219798-61-4;Metoprolol tartrate;56392-17-7;Metoprolol-d7;959787-96-3;(R)-Metoprolol-d7;1292907-84-6;(S)-Metoprolol-d7;1292906-91-2;Metoprolol-d5;959786-79-9
SMILES
OC(CNC(C)C)COC1=CC=C(CCOC)C=C1
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~374.03 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.35 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.35 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7403 mL 18.7014 mL 37.4028 mL
5 mM 0.7481 mL 3.7403 mL 7.4806 mL
10 mM 0.3740 mL 1.8701 mL 3.7403 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top