yingweiwo

Methylrosanilinium chloride

Cat No.:V25433 Purity: ≥98%
Methylrosanilinium chloride (Crystal violet) is a triarylmethane dye composed of amixture of violet rosanilinis with antibacterial, antifungal, and anthelmintic properties.
Methylrosanilinium chloride
Methylrosanilinium chloride Chemical Structure CAS No.: 548-62-9
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Methylrosanilinium chloride (Crystal violet) is a triarylmethane dye composed of a mixture of violet rosanilinis with antibacterial, antifungal, and anthelmintic properties.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Nine male and 9 female Hubbard adult broiler breeders were used to study tissue residues of gentian violet, each bird was given (14)C-gentian violet orally. T/2 of radioactivity from (14)C-gentian violet in blood differed between sexes (1.43 hr and 1.68 hr for males and females, respectively). At 8 hr after administration only 1 bird had detectable amt of radioactivity in muscle. Detectable levels of radioactivity were found in liver at 120 hr after dosing and in kidney at 432 hr after dosing. All eggs collected during 1St 144 hr contained very low but detectable levels of radioactivity.
Metabolism / Metabolites
Gentian violet is shown to undergo a one-electron reduction by the cytochrome P450 monooxygenase system to produce a carbon-centered free radical as demonstrated by direct electron spin resonance techniques.
Toxicity/Toxicokinetics
Non-Human Toxicity Values
LD50 Rat oral 420 mg/kg
LD50 Rat ip 17 mg/kg for both young and adult rats.
LD50 Rat intraperitoneal 8900 ug/kg
LD50 Mouse oral 96 mg/kg
LD50 Mouse intraperitoneal 5100 ug/kg
References

[1].The response of selected members of the archaea to the gram stain. Microbiology, 1996. 142 ( Pt 10): p. 2887-95.

[2].Curr Protoc Microbiol, 2005. Appendix 3: p. Appendix 3C.

[3].Statins potentiate cytostatic/cytotoxic activity of sorafenib but not sunitinib against tumor cell lines in vitro. Cancer Lett, 2010. 288(1): p. 57-67.

Additional Infomation
Gentian Violet can cause cancer according to an independent committee of scientific and health experts.
Hexamethyl-p-rosaniline chloride is a green to dark green powder. (NTP, 1992)
Crystal violet is an organic chloride salt that is the monochloride salt of crystal violet cation. It has been used in creams for the topical treatment of bacterial and fungal infections, being effective against some Gram-positive bacteria (notably Staphylococcus species) and some pathogenic fungi (including Candida species) but use declined following reports of animal carcinogenicity. It has also been used for dying wood, silk, and paper, as well as a histological stain. It has a role as a histological dye, an antiseptic drug, an antibacterial agent, an antifungal agent and an anthelminthic drug. It contains a crystal violet cation.
Gentian Violet is a blue, aniline-derived dye with antifungal and antimitotic properties. Gentian violet (GV) dissociates into positive (GV+) and negative ions (Cl-) that penetrate both gram-positive and gram-negative bacterial cells. The GV+ ions interact with negatively charged components of the bacterial cell wall including lipopolysaccharide, peptidoglycan and DNA. This agent is also a mutagen and mitotic poison. GV elicits a photodynamic action mediated by a free-radical mechanism. Furthermore, this agent dissipates the action potential on prokaryotic or eukaryotic membranes by inducing permeability, thereby leading to respiratory inhibition and subsequent cell death.
A dye that is a mixture of violet rosanilinis with antibacterial, antifungal, and anthelmintic properties.
See also: Gentian violet cation (has active moiety); Brilliant green; cod liver oil; gentian violet (component of); Acriflavine; Gentian Violet; Sodium Propionate (component of) ... View More ...
Therapeutic Uses
Anti-Infective Agents, Local; Antinematodal Agents; Rosaniline Dyes
Gentian violet has been used in medicine for almost 100 years: as an antiseptic for external use, as an antihelminthic agent by oral administration, and more recently, as a blood additive to prevent transmission of Chagas' disease. ...
THERAPEUTIC CATEGORY: Anti-infective (topical). Has been used as anthelmintic (Nematodes), Blood additive to prevent transmission of Chagas disease by blood transfusion
THERAPEUTIC CATEGORY (VET): Anti-infective (topical); mycostatic agent in poultry feed
For more Therapeutic Uses (Complete) data for Gentian Violet (7 total), please visit the HSDB record page.
Drug Warnings
Permanent pigmentation of the skin can result from contact of gentian violet with granulation tissue, & the dye should not be applied to ulcerative lesions of the face. The staining properties are a distinct disadvantage.
Oral ulceration developed in 6 neonates who were treated for oral candidiasis with gentian (crystal) violet. A 0.5 or 1% aq soln was used and applications were made twice daily.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H30CLN3
Molecular Weight
407.9788
Exact Mass
407.212
CAS #
548-62-9
PubChem CID
11057
Appearance
Light green to green solid powder
Density
1.19 g/cm3 (20ºC)
Melting Point
215ºC
Flash Point
40ºC
LogP
1.463
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
4
Heavy Atom Count
29
Complexity
542
Defined Atom Stereocenter Count
0
InChi Key
ZXJXZNDDNMQXFV-UHFFFAOYSA-M
InChi Code
InChI=1S/C25H30N3.ClH/c1-26(2)22-13-7-19(8-14-22)25(20-9-15-23(16-10-20)27(3)4)21-11-17-24(18-12-21)28(5)6;/h7-18H,1-6H3;1H/q+1;/p-1
Chemical Name
[4-[bis[4-(dimethylamino)phenyl]methylidene]cyclohexa-2,5-dien-1-ylidene]-dimethylazanium;chloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 100 mg/mL (~245.11 mM)
H2O : ~5 mg/mL (~12.26 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4511 mL 12.2555 mL 24.5110 mL
5 mM 0.4902 mL 2.4511 mL 4.9022 mL
10 mM 0.2451 mL 1.2256 mL 2.4511 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us