Size | Price | Stock | Qty |
---|---|---|---|
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Purity: =99.25%
ln Vitro |
Methionine-brain peptide (MENK) is an endogenous neuropeptide that is essential to the immunological and neuroendocrine systems. It is believed that MENK exhibits immunomodulatory properties. MENK can also alter the tumor microenvironment by binding to opioid absorption on or inside cancer cells and interacting with immune and cancer cells. Each of these possesses biological importance and the ability to manipulate cancer immunity mechanistically. Moreover, they disclose the connection between the immune system and the intestines [1].
|
---|---|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Metenkefalin reaches a Cmax of 1266.14pg/mL, with a Tmax of 0.16h, and an AUC of 360.64pg\*h/mL. Biological Half-Life The half life of metenkefalin is 4.2-39 minutes. |
References | |
Additional Infomation |
Metenkefalin is an endogenous opioid and beta-endorphin. It has been shown to reduce chromosomal abberations in patients with multiple sclerosis. Metenkefalin, along with [tridecactide], are under investigation as an immunomodulatory therapy for moderate to severe COVID-19.
MET-enkephalin has been reported in Mytilus edulis and Apis cerana with data available. Metenkefalin is a synthetic form of the naturally occurring, endogenous opioid peptide, metenkephalin, and agonist of the zeta- and delta-opioid receptor and, to a lesser extent the mu-opioid receptor, with potential analgesic, neuromodulatory, immunomodulatory, anti-inflammatory, antinociceptive/analgesic, antidepressant, and gastrointestinal (GI) motility modulating activities. Upon administration, metenkefalin mimics its endogenous ligand and targets, binds to and activates the opioid receptors. This leads to an analgesic effect, inhibits neuropathic pain, and inhibits GI muscle contractility. Binding to the opioid growth factor receptor (OGFR; zeta-opioid receptor), enhances tissue growth and regeneration. In addition, activation of delta-opioid receptors located on a variety of immune cells may modulate the inflammatory immune response. This may inhibit the secretion of pro-inflammatory cytokines and the proliferation of leukocytes. Opioid Growth Factor is an endogenous pentapeptide with potential antineoplastic and antiangiogenic activities. Opioid growth factor (OGF) binds to and activates the OGF receptor, present on some tumor cells and vascular cells, thereby inhibiting tumor cell proliferation and angiogenesis. (NCI05) One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN. Drug Indication Metenkefalin is indicated in Bosnia for the treatment of relapsing-remitting multiple sclerosis. Mechanism of Action Metenkefalin is an agonist of µ and δ opioid receptors. It also causes immunostimulation at low doses and immunosuppression at higher doses. Metenkefalin can also inhibit the production of aldosterone, deoxycorticosterone, and corticosterone. Unfortunately, the mechanisms by which these effects occur have not been well described in the literature. |
Molecular Formula |
C27H35N5O7S
|
---|---|
Molecular Weight |
573.665
|
Exact Mass |
573.226
|
CAS # |
58569-55-4
|
PubChem CID |
443363
|
Appearance |
White to off-white solid powder
|
Density |
1.324 g/cm3
|
Boiling Point |
1052.9ºC at 760 mmHg
|
Flash Point |
590.6ºC
|
Index of Refraction |
1.608
|
LogP |
1.808
|
Hydrogen Bond Donor Count |
7
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
16
|
Heavy Atom Count |
40
|
Complexity |
847
|
Defined Atom Stereocenter Count |
3
|
SMILES |
CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)CNC(=O)CNC(=O)[C@H](CC2=CC=C(C=C2)O)N
|
InChi Key |
YFGBQHOOROIVKG-FKBYEOEOSA-N
|
InChi Code |
InChI=1S/C27H35N5O7S/c1-40-12-11-21(27(38)39)32-26(37)22(14-17-5-3-2-4-6-17)31-24(35)16-29-23(34)15-30-25(36)20(28)13-18-7-9-19(33)10-8-18/h2-10,20-22,33H,11-16,28H2,1H3,(H,29,34)(H,30,36)(H,31,35)(H,32,37)(H,38,39)/t20-,21-,22-/m0/s1
|
Chemical Name |
(2S)-2-[[(2S)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoic acid
|
Synonyms |
Enkephalin methionine; CCRIS 4225; (Met5)-enkephalin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ≥ 40 mg/mL (~69.73 mM)
H2O : ~6.67 mg/mL (~11.63 mM) |
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7432 mL | 8.7158 mL | 17.4316 mL | |
5 mM | 0.3486 mL | 1.7432 mL | 3.4863 mL | |
10 mM | 0.1743 mL | 0.8716 mL | 1.7432 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.