Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Targets |
EP/prostanoid receptor
|
---|---|
ln Vitro |
1. The prostanoid receptor(s) that mediates inhibition of bacterial lipopolysaccharide (LPS)-induced tumour necrosis factor-alpha (TNF-alpha) generation from human peripheral blood monocytes was classified by use of naturally occurring and synthetic prostanoid agonists and antagonists. 2. In human monocytes that were adherent to plastic, neither prostaglandin D2 (PGD2), prostaglandin E2 (PGE2), prostaglandin F(2 alpha) (PGF(2 alpha)) nor the stable prostacyclin and thromboxane mimetics, cicaprost and U-46619, respectively, promoted the elaboration of TNF alpha-like immunoreactivity, as assessed with a specific ELISA, indicating the absence of excitatory prostanoid receptors on these cells. 3. Exposure of human monocytes to LPS (3 ng ml-1, approximately EC84) resulted in a time-dependent elaboration to TNF alpha which was suppressed in cells pretreated with prostaglandin E1 (PGe1), PGE2 and cicaprost. This effect was concentration-dependent with mean pIC50 values of 7.14, 7.34 and 8.00 for PGE1, PGE2 and cicaprost, respectively. PGD2, PGF(2 alpha) and U-46619 failed to inhibit the generation of TNF alpha at concentrations up to 10 microM. 4. With respect to PGE2, the EP-receptor agonists, 16,16-dimethyl PGE2 (non-selective), misoprostol (EP2/EP3-selective), 11-deoxy PGE1 (EP2-selective) and butaprost (EP2-selective) were essentially full agonists as inhibitors of LPS-induced TNF alpha generation with mean pIC50 values of 6.21, 6.02, 5.67 and 5.59, respectively. In contrast to the results obtained with butaprost and 11-deoxy PGE1, another EP2-selective agonist, AH 13205, inhibited TNF alpha generation by only 21% at the highest concentration (10 microM) examined. EP-receptor agonists which have selectively for the EP1- (17-phenyl-omega-trinor PGE2) and EP3-receptor (MB 28,767, sulprostone) were inactive or only weakly active as inhibitors of TNF alpha generation. 5. Pretreatment of human monocytes with the TP/EP4-receptor antagonist, AH 23848B, at 10, 30 and 100 microM suppressed LPS-induced TNF alpha generation by 10%, 28% and 77%, respectively, but failed to shift significantly the location of the PGE2 concentration-response curves. 6. Given that AH 13205 was a poor inhibitor of TNF alpha generation, studies were performed to determine if it was a partial agonist and whether it could antagonize the inhibitory effect of PGE2. Pretreatment of human monocytes with 10 and 30 microM AH 13205 inhibited the generation of TNF alpha by 31% and 53%, respectively, but failed to shift significantly the location of the PGE2 concentration-response curves at either concentration examined. 7. Since PGD2 and 17-phenyl-omega-trinor PGE2 (EP1-agonist) did not suppress TNF alpha generation, the EP1/EP2/DP-receptor antagonist, AH 6809, was employed to assess if EP2-receptors mediated the inhibitory effect of PGE2. Pretreatment of human monocytes with 10 microM AH 6809 did not affect LPS-induced TNF alpha generation but produced a parallel 3.5 fold rightwards shift of the PGE2 concentration-response curve. 8. Collectively, these data suggest that human peripheral blood monocytes express at least two distinct populations of inhibitory prostanoid receptors that mediate inhibition of LPS-induced TNF alpha generation. One of these probably represents i.p. receptors based upon the selectivity of cicaprost for this subtype. The other population has the pharmacology of EP-receptors, but the rank of potency for a range of synthetic EP-receptor agonists was inconsistent with an interaction with any of the currently defined subtypes. Given the pharmacological behaviour of butaprost, AH 6809 and AH 23848B in these cells, we propose that multiple (EP2- and/or EP-4- and/or i.p.) or novel EP-receptors mediate the inhibitory effect of PGE2 on TNF alpha generation[1].
|
References |
[1]. Br J Pharmacol. 1997 Sep;122(1):149-57. doi: 10.1038/sj.bjp.0701360.
|
Molecular Formula |
C22H30O5
|
---|---|
Molecular Weight |
374.48
|
Exact Mass |
374.209
|
Elemental Analysis |
C, 70.56; H, 8.08; O, 21.36
|
CAS # |
80558-61-8
|
PubChem CID |
5311223
|
Appearance |
Typically exists as solid at room temperature
|
Density |
1.175g/cm3
|
Boiling Point |
582.7ºC at 760 mmHg
|
Flash Point |
200ºC
|
Index of Refraction |
1.575
|
LogP |
4.003
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
12
|
Heavy Atom Count |
27
|
Complexity |
481
|
Defined Atom Stereocenter Count |
3
|
SMILES |
O=C(O)CCCCCC[C@@H]1[C@@H](/C=C/[C@@H](O)COC2=CC=CC=C2)CCC1=O
|
InChi Key |
NZGFSDWJUZOAAX-KAVAACISSA-N
|
InChi Code |
InChI=1S/C22H30O5/c23-18(16-27-19-8-4-3-5-9-19)14-12-17-13-15-21(24)20(17)10-6-1-2-7-11-22(25)26/h3-5,8-9,12,14,17-18,20,23H,1-2,6-7,10-11,13,15-16H2,(H,25,26)/b14-12+/t17-,18+,20+/m0/s1
|
Chemical Name |
7-[(1R,2R)-2-[(E,3R)-3-hydroxy-4-phenoxybut-1-enyl]-5-oxocyclopentyl]heptanoic acid
|
Synonyms |
MB28767; MB 28767; Dpt-prostaglandin E1; MB-28767; 80558-61-8; M&B 28767; M&B 28,767; 11-Deoxy-16-phenoxy-17,18,19,20-tetranor-PGE1; 11-Deoxy-16-phenoxy-17,18,19,20-tetranorprostaglandin E1; 70K4BF31QF; MB-28767
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.6704 mL | 13.3518 mL | 26.7037 mL | |
5 mM | 0.5341 mL | 2.6704 mL | 5.3407 mL | |
10 mM | 0.2670 mL | 1.3352 mL | 2.6704 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.