LY-294002 hydrochloride

Cat No.:V41773 Purity: ≥98%
LY-294002 hydrochloride isa morpholine-containing compound based on the flavonoid quercetin, acting as apotent and cell-permeable PI3K inhibitor,inhibiting PI3Kα/δ/β with IC50 of 0.5 μM/0.57 μM/0.97 μM in cell-free assays, respectively.
LY-294002 hydrochloride Chemical Structure CAS No.: 934389-88-5
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price
25mg
50mg
100mg
250mg
500mg

Other Forms of LY-294002 hydrochloride:

  • LY294002
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

LY-294002 hydrochloride is a morpholine-containing compound based on the flavonoid quercetin, acting as a potent and cell-permeable PI3K inhibitor, inhibiting PI3Kα/δ/β with IC50 of 0.5 μM/0.57 μM/0.97 μM in cell-free assays, respectively. It is also an inhibitor of BET (e.g. of BRD2, BRD3, and BRD4). In solution, it is more stable than Wortmannin (PI3K inhibitor). LY294002 is selective against p110α, p110β, p110γ and p110δ, by acting on the ATP binding site of the catalytic subunit of PI3K.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In a dose-dependent manner, LY294002 hydrochloride (0-75 μM; 24 and 48 hours) significantly reduces human nasopharyngeal cancer CNE-2Z cells[4]. LY294002 hydrochloride (0-75 μM; 24 and 48 hours) dose-dependently increases the rate of apoptosis in CNE-2Z cells[4]. In CNE-2Z cells, LY294002 hydrochloride (10–75 μM) dramatically reduces p-Akt (S473) expression levels and increases caspase-9 activity. There is no variation in the total Akt protein level across varied concentrations [4]. Treatment with LY294002 hydrochloride (5, 10, 100 µM; for 2 hours) partially inhibits the nuclear translocation of YAP produced by Lysophosphatidic acid (LPA) (20 µM; for 4 hours), which is followed by a decrease in p-AKT levels[6].
ln Vivo
In a dose-dependent manner, LY294002 hydrochloride (10, 25, 50, 75 mg/kg; ip; twice weekly; for 4 weeks) considerably lowers the mean NPC tumor burden. The effectiveness of LY294002 (10, 25 mg/kg) in reducing tumor burden is lower[4]. In Sprague-Dawley rats, LY294002 hydrochloride (1.2 mg/kg ip; i.p.) for 14 days inhibits the deleterious effects of leptin (60 ug/kg) on spermatozoa[5].
Cell Assay
Cell Proliferation Assay
Cell Types: CNE-2Z cells[4]
Tested Concentrations: 0 μM, 10 μM, 25 μM, 50 μM, and 75 μM
Incubation Duration: 24 hrs (hours) and 48 hrs (hours)
Experimental Results: diminished CNE-2Z cells in a dose-dependent fashion.

Apoptosis Analysis
Cell Types: CNE-2Z cells[4]
Tested Concentrations: 0 μM, 10 μM, 25 μM, 50 μM, and 75 μM
Incubation Duration: 24 hrs (hours) and 48 hrs (hours)
Experimental Results: Induced apoptosis rate in a dose-dependent manner.

Western Blot Analysis
Cell Types: CNE-2Z cells[4]
Tested Concentrations: 0 μM, 10 μM, 25 μM, 50 μM, and 75 μM
Incubation Duration: 24 hrs (hours) and 48 hrs (hours)
Experimental Results: diminished phosphorylated Akt (S473) expression levels were Dramatically, up-regulated caspase-9 activity in CNE-2Z cells in treated group.
Animal Protocol
Animal/Disease Models: Athymic nude mice (6-8 weeks) with CNE-2Z xenograft[4]
Doses: 10 mg/kg, 25 mg/kg, 50 mg/kg, and 75 mg/kg
Route of Administration: IP; twice weekly, for 4 weeks
Experimental Results: Mean Nasopharyngeal carcinoma (NPC) tumor burden was remarkably decreased in a dose-dependent manner.
References
[1]. Bai R, et al. The effect of PI3K inhibitor LY294002 and gemcitabine hydrochloride combined with ionizing radiation on the formation of vasculogenic mimicry of Panc-1 cells in vitro and in vivo. Neoplasma. 2016;63(1):80-92.
[2]. Chaussade C, et al. Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem J. 2007 Jun 15;404(3):449-58.
[3]. Gharbi SI, et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J. 2007 May 15;404(1):15-21.
[4]. Jiang H, et al. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma invitro and in vivo. J Exp Clin Cancer Res. 2010 Apr 22;29:34.
[5]. Md Mokhtar AH, et al. LY294002, a PI3K pathway inhibitor, prevents leptin-induced adverse effects on spermatozoa in Sprague-Dawley rats. Andrologia. 2019 Apr;51(3):e13196.
[6]. Yi-Jen Hsueh, et al. Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways. Mol Ther Methods Clin Dev. 2015 Apr 29;2:15014.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H17NO3.HCL
Molecular Weight
343.80412
CAS #
934389-88-5
Related CAS #
LY294002;154447-36-6
SMILES
Cl.O1CCN(C2=CC(=O)C3C=CC=C(C4C=CC=CC=4)C=3O2)CC1
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.9087 mL 14.5433 mL 29.0867 mL
5 mM 0.5817 mL 2.9087 mL 5.8173 mL
10 mM 0.2909 mL 1.4543 mL 2.9087 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top