yingweiwo

Lucanthone hydrochloride

Cat No.:V22635 Purity: ≥98%
Lucanthone HCl is an endonuclease inhibitor of Apurinic endonuclease-1 (APE-1).
Lucanthone hydrochloride
Lucanthone hydrochloride Chemical Structure CAS No.: 548-57-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Lucanthone hydrochloride:

  • Lucanthone
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Lucanthone HCl is an endonuclease inhibitor of Apurinic endonuclease-1 (APE-1).
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Sulfanthone hydrochloride is a new autophagy inhibitor that can promote cathepsin D-mediated apoptosis. To evaluate the anticancer efficacy of sulfanthone hydrochloride, cell viability was determined by MTT assay. Sulfanthone hydrochloride reduced cell viability to a same level in seven breast cancer cell lines. Furthermore, direct comparison showed that sulfanthone hydrochloride was more effective than chloroquine (CQ) in lowering breast cancer cell viability, with an average IC50 of 7.2 μM compared to 66 μM for CQ. Comparable results were achieved by evaluating cell viability of two representative cell lines (MDA-MB-231 and BT-20) by ATPlite assay and trypan blue exclusion technique [2].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
...The organ distribution of 3H lucanthone in mice and 125I lucanthone in rats was determined to learn if lucanthone crossed the blood-brain barrier. Size determinations were made of patients' brain metastases from magnetic resonance images or by computed tomography before and after treatment with 30 Gy whole brain radiation alone or with lucanthone. ...The time course of lucanthone's distribution in brain was identical to that in muscle and heart after intraperitoneal or intravenous administration in experimental animals. Lucanthone, therefore, readily crossed the blood-brain barrier in experimental animals. ...Compared with radiation alone, the tumor regression in patients with brain metastases treated with lucanthone and radiation was accelerated, approaching significance using a permutation test at p=0.0536.
Biological Half-Life
A sublethal dose of 100 mg lucanthone hydrochloride/kg (Miracil D, Nilodin; NSC-14574) administered ip into Chinese hamsters (median lethal dose for 30-day survival (LD50/30) of 315 mg/kg) ... Serum concentration of lucanthone hydrochloride in the Chinese hamster, determined spectrophotometrically, reached a peak of 8 microgram/ml by 1.5 hours post inoculation and then decreased exponentially with a half-life of approximately 6 hours, so that by 30 hours post inoculation it was unmeasurable.
Toxicity/Toxicokinetics
Interactions
The interaction of lucanthone and cyclophosphamide (CYC) was investigated in the Chinese hamster in terms of the LD50/7 and LD50/30. These values may be indicative of gastrointestinal stem cell depletion and bone marrow stem cell depletion, respectively. When a nonlethal dose of 100 mg/kg lucanthone preceded CYC injection, the LD50/7 for CYC reached its minimum value of 470 mg/kg at a treatment interval of 10 hours. Lucanthone administered simultaneously with CYC had no effect on the control LD50/7 of 750 mg/kg, and by 48 hours after lucanthone administration the LD50/7 had returned to the control value. When CYC administration preceded that of lucanthone, the LD50/7 reached a minimum of value of 610 mg/kg at an interval of 5 hours; however, for the entire sequence it was approximately 640 mg/kg over all intervals up to 48 hours. The LD50/30 for CYC was only slightly reduced by the presence of lucanthone, indicating that bone marrow sensitivity to CYC was only marginally affected by lucanthone. These data indicate that lucanthone may interact with CYC damage in much the same way as it interacts with radiation damage, viz, by reducing cellular capacity to accumulate and repair sublethal damage.
Non-Human Toxicity Values
LD50 Mouse iv 56 mg/kg /Lucanthone/
LD50 Mouse intramuscular 400 mg/kg /Lucanthone/
References
[1]. Chowdhury SM, et al. Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomedicine. 2015 Jan;11(1):109-18.
[2]. Carew JS, et al. Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
Additional Infomation
One of the SCHISTOSOMICIDES, it has been replaced largely by HYCANTHONE and more recently PRAZIQUANTEL. (From Martindale The Extrapharmacopoeia, 30th ed., p46)
Mechanism of Action
The ability of lucanthone to inhibit the normal repair of abasic sites might reflect inhibition of apurinic/apyrimidinic endonuclease (HAP1) by the drug, thereby preventing an early step in the base excision repair pathway. Unrepaired abasic sites prevalent after ionizing radiation are cytotoxic lesions that promote DNA strand breaks. These results suggest a rationale for the joint lethal effects of lucanthone and ionizing radiation in cells and the accelerated tumor regression observed in cancer patients who received the combined therapy.
Addition of lucanthone (1-5 ug/ml) to cultures of Tetrahymena results in a preferential inhibition of the synthesis of ribosomal RNA. Transcriptional studies with isolated nucleoli from Tetrahymena demonstrate that the endogenous RNA polymerases of the r-chromatin (chromatin form of rDNA) do not recognize the normal termination and move into the spacer region distal to the terminator in the presence of lucanthone. ...Lucanthone seems specific in its action on termination as it does not inhibit the elongation process on the chromatin. Among various DNA- binding drugs tested only lucanthone and proflavine are found to cause repression of the termination. The data obtained suggest that the reduced synthesis of rRNA in lucanthone-treated eukaryotic cells is due to lack of reinitiating RNA polymerases possibly caused by improper termination.
Exposure of HeLa cells to lucanthone (3 ug/ml) caused dissociation of a fast-sedimenting duplex DNA complex, as judged by lysis and sedimentation in alkaline sucrose gradients. The effect of lucanthone on the DNA complex resembled that of actinomycin D and ionizing radiation. Protein synthesis inhibitors such as cycloheximide or inhibitors of DNA synthesis such as hydroxyurea did not lead to dissociation of the complex. ...Lucanthone promoted X-ray-induced denaturation of DNA in intact cells, as judged by their nuclear immunoreactivity to antinucleoside antibodies. Lucanthone did not inhibit repair of X-ray-induced DNA single-strand breaks.
Studies were conducted on the stimulatory effect that various nucleic-acid-binding compounds have on the hydrolysis of RNA and polyribonucleotides by pancreatic ribonuclease A and by other ribonucleases. ...Lucanthone... stimulated the hydrolysis of tRNA by pancreatic ribonuclease A. .../In addition,/ lucanthone, stimulated the hydrolysis of tRNA by ribonuclease N1.
For more Mechanism of Action (Complete) data for LUCANTHONE HYDROCHLORIDE (7 total), please visit the HSDB record page.
Therapeutic Uses
Lucanthone is an antitumor drug used as an adjuvant in radiation therapy. The drug intercalates into DNA and inhibits topoisomerase II.
Antihelmintic (Schistosoma).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H24N2OS.CL-
Molecular Weight
375.93536
Exact Mass
376.138
CAS #
548-57-2
Related CAS #
Lucanthone;479-50-5
PubChem CID
11054
Appearance
Yellow crystals from alcohol
Boiling Point
512.4ºC at 760 mmHg
Melting Point
195-196ºC
Flash Point
263.7ºC
LogP
5.351
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
6
Heavy Atom Count
25
Complexity
426
Defined Atom Stereocenter Count
0
SMILES
CCN(CC)CCNC1=C2C(=O)C3=CC=CC=C3SC2=C(C)C=C1.Cl
InChi Key
LAOOXBLMIJHMFO-UHFFFAOYSA-N
InChi Code
InChI=1S/C20H24N2OS.ClH/c1-4-22(5-2)13-12-21-16-11-10-14(3)20-18(16)19(23)15-8-6-7-9-17(15)24-20;/h6-11,21H,4-5,12-13H2,1-3H3;1H
Chemical Name
1-[2-(diethylamino)ethylamino]-4-methylthioxanthen-9-one;hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6600 mL 13.3000 mL 26.6000 mL
5 mM 0.5320 mL 2.6600 mL 5.3200 mL
10 mM 0.2660 mL 1.3300 mL 2.6600 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us