LB-100

Alias: LB100; LB 100; LB-100
Cat No.:V1901 Purity: ≥98%
LB-100 (LB100) is a water soluble small-molecular protein phosphatase 2A (PP2A) inhibitor with anticancer activity.
LB-100 Chemical Structure CAS No.: 1632032-53-1
Product category: Others
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of LB-100:

  • (Rac)-LB-100
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

LB-100 (LB100) is a water soluble small-molecular protein phosphatase 2A (PP2A) inhibitor with anticancer activity. It inhibits PP2A with IC50 of 0.85 μM and 3.87 μM in BxPc-3 and Panc-1 cells. By using CCK-8 assays, LB-100 showed dose-dependent inhibition of cell growth in both cell lines. The IC50 of LB-100 was 0.85 μM and 3.87 μM in BxPc-3 and Panc-1, respectively. While the IC50 of doxorubicin was 2.3 μM and 1.7 μM in BxPc-3 and Panc-1, respectively, LB-100 did not synergize with doxorubicin in both cell lines. LB-100 treatment reduced PP2A activity by 30–50% in different pancreatic cell lines. LB-100 treatment increased the relative concentration of doxorubicin by up to 2.5 fold compared to cells not exposed to LB-100. LB-100 significantly enhanced inhibition of HCC by doxorubicin and cisplatin in vitro and in vivo in a PP2A-dependent way, while having little inhibitory activity when used alone.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
With IC50 values of 2.3 μM (BxPc-3) and 1.7 μM (Panc-1), LB-100 suppresses cell proliferation. In BxPc-3, Panc-1, and SW1990 cells, LB-100 exhibited a 30-50% reduction in PP2A activity. LB-100 sensitizes tumor cells to the cytotoxicity of doxorubicin and raises its intracellular concentration (to 2.5 times the control). LB-100 promotes HIF-1α-VEGF-mediated angiogenesis by increasing VEGF production [1]. The integrity of ve-cadherin in endothelial cells is changed by LB-100. The amount of dye that passed through the HUVECs monolayer increased by nearly 40% after pretreatment with LB-100. The quantity of doxorubicin in tumor cells may be increased by LB-100 because it causes an increase in the paracellular permeability of vascular endothelial cells [2]. Sorafenib-induced HCC cell death is enhanced by LB-100, which also downregulates Bcl-2 expression [3].
ln Vivo
In nude mouse xenografts and livers, LB-100 (2 mg/kg, i.p.) decreases PP2A activity in a time-dependent way. The expression of the three PP2A subunits (PP2A_A, PP2A_B, and PP2A_C) in cell lines, xenografts, and liver is not changed by LB-100, as demonstrated by immunoblotting. While a single drug treatment had little effect on the animals, the combined use of doxorubicin (1.5 kg/mL, every other day) and LB-100 (2 mg/kg, every other day) can dramatically slow down the tumor growth and lower the tumor volume in both animals. Growth of tumors has little impact [2].
Animal Protocol
2 mg/kg
BALB/c nude mice are injected subcutaneously in the right flank with 1×106 Huh-7 cells suspended in 200 μL PBS per mouse. After a tumor volume of 100 to 200 mm3 is reached, tumor-bearing mice are randomLy allocated to four groups: control group, doxorubicin/cisplatin group, LB-100 group, and doxorubicin/cisplatin plus LB-100 group. For the doxorubicin plus LB-100 study (n=6 to 8), doxorubicin and LB-100 are injected i.p. at 1.5 and 2 mg/kg, respectively, on alternate days for a total of 16 days. For the cisplatin plus LB-100 study (n=8 to 10), cisplatin and LB-100 are injected at 3 and 2.5 mg/kg, i.p., respectively; cisplatin is injected every 4 days and LB-100 is used every other day for 16 days. Control mice are injected with DMSO (in the doxorubicin plus LB-100 group) or PBS (in the cisplatin plus LB-100 group) on the same schedule as the drug-treated animals. Tumor size is monitored every 3 or 4 days, and is calculated by the formula: tumor volume=length × width × height/2. All mice are sacrificed at day 16, and xenografts are obtained, weighed, and fixed with 10% formaldehyde.
References
[1]. Bai X, et al. Inhibition of protein phosphatase 2A sensitizes pancreatic cancer to chemotherapy by increasing drug perfusion via HIF-1α-VEGF mediated angiogenesis. Cancer Lett. 2014 Oct 7. pii: S0304-3835(14)00589-8.
[2]. Bai XL, et al. Inhibition of protein phosphatase 2A enhances cytotoxicity and accessibility of chemotherapeutic drugs to hepatocellular carcinomas. Mol Cancer Ther. 2014 Aug;13(8):2062-72.
[3]. Fu QH, et al. LB-100 sensitizes hepatocellular carcinoma cells to the effects of sorafenib during hypoxia by activation of Smad3 phosphorylation. Tumour Biol. 2016 Jun;37(6):7277-8
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C13H20N2O4
Molecular Weight
268.31
CAS #
1632032-53-1
SMILES
O1[C@]2([H])C([H])([H])C([H])([H])[C@@]1([H])[C@@]([H])(C(N1C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])C1([H])[H])=O)[C@]2([H])C(=O)O[H]
InChi Key
JUQMLSGOTNKJKI-UHFFFAOYSA-N
InChi Code
InChI=1S/C13H20N2O4/c1-14-4-6-15(7-5-14)12(16)10-8-2-3-9(19-8)11(10)13(17)18/h8-11H,2-7H2,1H3,(H,17,18)
Chemical Name
3-[(4-Methylpiperazin-1-yl)carbonyl]-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid
Synonyms
LB100; LB 100; LB-100
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO:< 2.9 mg/mL
Water:≥ 48 mg/mL
Ethanol: N/A
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7270 mL 18.6352 mL 37.2703 mL
5 mM 0.7454 mL 3.7270 mL 7.4541 mL
10 mM 0.3727 mL 1.8635 mL 3.7270 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us