yingweiwo

Kynurenine

Alias: DL-Kynurenine; 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid
Cat No.:V13205 Purity: ≥98%
2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid is an endogenously produced metabolite.
Kynurenine
Kynurenine Chemical Structure CAS No.: 343-65-7
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Kynurenine [also known as 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid] is an endogenously produced metabolite from the essential amino acid tryptophan via the tryptophan-kynurenine pathway. It causes vasodilation and hypotension induced by activation of KCNQ-encoded voltage-dependent K(+) channels.
Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous metabolite
ln Vitro
There are two main enzymes that convert tryptophan (Trp) to kynurenine (Kyn): tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Kyn accumulation can promote immunosuppression in certain cancers. In this study, we investigated Trp degradation to Kyn by IDO and TDO in primary human hepatocytes (PHH) and tumoral HepG2 cells. To quantify Trp-degradation and Kyn-accumulation, using reversed-phase high-pressure liquid chromatography, the levels of Trp and Kyn were determined in the culture media of PHH and HepG2 cells. The role of IDO in Trp metabolism was investigated by activating IDO with IFN-γ and inhibiting IDO with 1-methyl-tryptophan (1-DL-MT). The role of TDO was investigated using one of two TDO inhibitors: 680C91 or LM10. Real-time PCR was used to measure TDO and IDO expression. Trp was degraded in both PHH and HepG2 cells, but degradation was higher in PHH cells. However, Kyn accumulation was higher in the supernatants of HepG2 cells. Stimulating IDO with IFN-γ did not significantly affect Trp degradation and Kyn accumulation, even though it strongly upregulated IDO expression. Inhibiting IDO with 1-DL-MT also had no effect on Trp degradation. In contrast, inhibiting TDO with 680C91 or LM10 significantly reduced Trp degradation. The expression of TDO but not of IDO correlated positively with Kyn accumulation in the HepG2 cell culture media. Furthermore, TDO degraded L-Trp but not D-Trp in HepG2 cells. Kyn is the main metabolite of Trp degradation by TDO in HepG2 cells. The accumulation of Kyn in HepG2 cells could be a key mechanism for tumor immune resistance. Two TDO inhibitors, 680C91 and LM10, could be useful in immunotherapy for liver cancers [1].
ln Vivo
Indoleamine 2,3 dioxygenase-1 (IDO1) catalyzes tryptophan-kynurenine metabolism in many inflammatory and cancer diseases. Of note, acute inflammation that occurs immediately after heart injury is essential for neonatal cardiomyocyte proliferation and heart regeneration. However, the IDO1-catalyzed tryptophan metabolism during heart regeneration is largely unexplored. Here, we find that apical neonatal mouse heart resection surgery led to rapid and consistent increases in cardiac IDO1 expression and kynurenine accumulation. Cardiac deletion of Ido1 gene or chemical inhibition of IDO1 impairs heart regeneration. Mechanistically, elevated kynurenine triggers cardiomyocyte proliferation by activating the cytoplasmic aryl hydrocarbon receptor-SRC-YAP/ERK pathway. In addition, cardiomyocyte-derived kynurenine transports to endothelial cells and stimulates cardiac angiogenesis by promoting aryl hydrocarbon receptor nuclear translocation and enhancing vascular endothelial growth factor A expression. Notably, Ahr deletion prevents indoleamine 2,3 dioxygenase -kynurenine-associated heart regeneration. In summary, increasing indoleamine 2,3 dioxygenase-derived kynurenine level promotes cardiac regeneration by functioning as an endogenous regulator of cardiomyocyte proliferation and cardiac angiogenesis [2].
Cell Assay
HepG2 cells and PHH cells were cultured as previously described. PHH and HepG2 cells were cultured in William’s medium with increasing concentrations of Trp (60, 120, and 240 µmol/L). Trp and Kyn levels in cultivated PHH and HepG2 cell supernatants were examined at 24 h, 48 h, and 72 h. In the next step, we also investigated the maximum Trp degradation in HepG2 cells by culturing these cells for 72 h in William’s medium containing higher amounts of Trp (480 µmol/L, 960 µmol/L, and 1920 µmol/L). To determine whether IDO is responsible for Trp breakdown, we activated IDO with IFN-γ and inhibited IDO with 1-methyl-tryptophan (1-DL-MT) in PHH and HepG2 cells. In these experiments, the cells were cultured for 72 h under one of the following conditions: no treatment, stimulated with IFN-γ, treated with IFN-γ + 1-DL-MT, and treated with 1-DL-MT alone. After 72 h, the amounts of Trp and Kyn in the supernatants were determined. To determine whether TDO is responsible for Trp breakdown, we cultured cells with the TDO inhibitors LM10 and 680C91. In these experiments, HepG2 cells were treated with increasing amounts of 680C91 (10, 20, 40, and 80 µmol/L) and LM10 (25, 50, and 75 µmol/L) in a medium containing 240 µM Trp for 72 h before measuring Trp and Kyn levels in the supernatant. To investigate which Trp isoform (L-Trp or D-Trp) is degraded by TDO, we cultured HepG2 cells in media containing 60, 120, or 240 µM of L-Trp or D-Trp for 72 h, and measured the Trp and Kyn levels after 72 h [1].
Animal Protocol
Mice [2]
All procedures involving animals were approved by the Institutional Animal Care and Use Committee at Georgia State University (GSU). Cardiomyocyte (CM)-specific knockout Ido1 (Ido1 mKO) mice were developed by crossing floxed Ido1 (Ido1 F/F) mice with Troponin T (Tnt)-Cre mice. In addition, deficiency of Ido1 in endothelial cell (EC) or vascular smooth muscle cell (VSMC) was obtained by crossbreeding Ido1 F/F with Cdh5-Cre or Myh11-Cre and generated Cdh5-Cre; Ido1 F/F (Ido1 ecKO) or Myh11-Cre; Ido1 F/F (Ido1 vsmcKO) transgenic mice. Their respective littermate of Ido1 F/F were used as controls. The transgenic mice and wild-type mice were in a C57BL/6 background and purchased from Jackson Laboratory (Bar Harbor, ME, USA). Tail biopsy DNA was extracted for genotyping according to the Jackson protocol. All mice were housed in temperature-controlled cages under a 12-h light–dark cycle and given free access to water and food at Georgia State University.
Neonatal cardiac apex resection surgery [2]
The neonatal mouse heart regeneration model was generated by heart apical resection (AR) surgery for 3–4 weeks as described9. Briefly, postnatal day 1 (P1) or P6 mice were subjected to anesthesia by freezing for 3–5 min. A curved forcep was extended into the chest to pull the heart out. Then, the left ventricular apex was truncated with microsurgical scissors until the ventricular chamber was exposed. The mouse chest was sewn up with 8-0 sutures, and the mice were warmed until recovery. The entire procedure required approximately about 10 min. Sham procedures excluded apex amputation. To detect the role of 1-methyl-D-tryptophan (1MT) and kynurenine (Kyn) in heart regeneration, 1MT (100 mg/kg) and Kyn (100 mg/kg) were intraperitoneally injected into wild-type mice every other day from P1 and were subjected to AR surgery at P2 and P6, respectively. The equal volume of PBS was used as vehicle control.
References
[1]. J Clin Med. 2022 Aug 16;11(16):4794.
[2]. Nat Commun. 2022 Oct 26;13(1):6371.
Additional Infomation
Kynurenine is a ketone that is alanine in which one of the methyl hydrogens is substituted by a 2-aminobenzoyl group. It has a role as a human metabolite. It is a substituted aniline, an aromatic ketone and a non-proteinogenic alpha-amino acid. It is a conjugate acid of a kynureninate.
Kynurenine has been reported in Drosophila melanogaster, Psychotria punctata, and other organisms with data available.
Kynurenine is a ketone and an amino acid derivative that is synthesized by either tryptophan 2,3-dioxygenase (TDO)- or indoleamine 2,3-dioxygenase (IDO)-mediated oxidation of tryptophan with diverse biological functions, including vasodilatory, immunoregulatory and neuromodulatory activities. Kynurenine is a precursor for niacin. Additionally, kynurenine can be further metabolized into anthranilic acid, kynurenic acid, and 3-hydroxykynurenine; aberrant production of kynurenine is associated with neurological disease-related cognitive deficits and depressive symptoms. Overexpressed in certain cancer cell types, kynurenine could potentially be used as a biomarker to assess cancer risk.
A metabolite of the essential amino acid tryptophan metabolized via the tryptophan-kynurenine pathway.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H12N2O3
Molecular Weight
208.2139
Exact Mass
208.084
Elemental Analysis
C, 57.69; H, 5.81; N, 13.45; O, 23.05
CAS #
343-65-7
PubChem CID
846
Appearance
Light yellow to yellow solid
Density
1.3±0.1 g/cm3
Boiling Point
466.6±45.0 °C at 760 mmHg
Melting Point
~235 °C (dec.)
Flash Point
236.0±28.7 °C
Vapour Pressure
0.0±1.2 mmHg at 25°C
Index of Refraction
1.626
LogP
1.09
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
4
Heavy Atom Count
15
Complexity
255
Defined Atom Stereocenter Count
0
SMILES
O=C(C1=C([H])C([H])=C([H])C([H])=C1N([H])[H])C([H])([H])C([H])(C(=O)O[H])N([H])[H]
InChi Key
YGPSJZOEDVAXAB-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H12N2O3/c11-7-4-2-1-3-6(7)9(13)5-8(12)10(14)15/h1-4,8H,5,11-12H2,(H,14,15)
Chemical Name
alpha-2-Diamino-gamma-oxobenzenebutyric acid
Synonyms
DL-Kynurenine; 2-Amino-4-(2-aminophenyl)-4-oxobutanoic acid
HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
1M HCl : 20 mg/mL (~96.05 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.8028 mL 24.0142 mL 48.0284 mL
5 mM 0.9606 mL 4.8028 mL 9.6057 mL
10 mM 0.4803 mL 2.4014 mL 4.8028 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us