Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
ln Vitro |
The cytoplasmic protein tyrosine kinases known as JAK kinases consist of JAK1, JAK2, JAK3, and TYK2. In the end, STAT proteins attach to particular DNA sequences found in the promoters of cytokine-responsive genes and function as both transcription factors and signaling molecules. Numerous aberrant immune responses, including allergies, asthma, autoimmune diseases like transplant rejection, rheumatoid arthritis, amyotrophic lateral sclerosis, multiple sclerosis, eye disorders, and hematological and solid diseases, are mediated by JAK/STAT signaling. Malignant tumors, include lymphoma and leukemia [1].
|
---|---|
References | |
Additional Infomation |
Drug Indication
Investigated for use/treatment in autoimmune diseases. Mechanism of Action R438 is a selective Janus tyrosine kinase 3 (JAK3) inhibitor prodrug which is converted to its active metabolite R333. JAKs are cytoplasmic tyrosine kinases that are involved in immune system activation and cytokine signaling. They achieve their effects when coupled with signal tranducers and activators of transcription (STATs). JAK3 is critical to immune system activation, and high levels of JAK3 are expressed in cells and thyocytes, and are inducible in T and B cells. JAK3 is also found in nonhematopoietic cells, but its function in these cells is currently undetermined. JAK3 inhibitors impede the development of CD8 memory cells by attenuating the interleukin 7 (IL7) and interleukin 15 (IL-15) pathways, making it a promising drug for treatment of autoimmune disorders. |
Molecular Formula |
C23H22FN5O4S
|
---|---|
Molecular Weight |
483.515286922455
|
Exact Mass |
483.137
|
CAS # |
916742-11-5
|
PubChem CID |
23648971
|
Appearance |
Off-white to light yellow solid powder
|
Density |
1.4±0.1 g/cm3
|
Index of Refraction |
1.625
|
LogP |
2
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
9
|
Heavy Atom Count |
34
|
Complexity |
821
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
IGLNXKVGKIFNBQ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H22FN5O4S/c1-4-12-33-18-10-8-16(9-11-18)26-22-19(24)14-25-23(28-22)27-17-7-6-15(3)20(13-17)34(31,32)29-21(30)5-2/h1,6-11,13-14H,5,12H2,2-3H3,(H,29,30)(H2,25,26,27,28)
|
Chemical Name |
N-[5-[[5-fluoro-4-(4-prop-2-ynoxyanilino)pyrimidin-2-yl]amino]-2-methylphenyl]sulfonylpropanamide
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~125 mg/mL (~258.52 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0682 mL | 10.3408 mL | 20.6817 mL | |
5 mM | 0.4136 mL | 2.0682 mL | 4.1363 mL | |
10 mM | 0.2068 mL | 1.0341 mL | 2.0682 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.