yingweiwo

Insulin (human)

Cat No.:V33885 Purity: =99.73%
Insulin (human) is an endogenous/naturally occurring polypeptide hormone produced in the pancreas.
Insulin (human)
Insulin (human) Chemical Structure CAS No.: 11061-68-0
Product category: New8
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: =99.73%

Purity: ≥98%

Product Description

Insulin (human) is an endogenous/naturally occurring polypeptide hormone produced in the pancreas. Its main role is to regulate sugar levels by allowing cells throughout the body to uptake glucose (sugar) and convert it into a form that can be used by these cells for energy. Basically, insulin helps remove sugar from the blood. This helps lower the blood sugar levels. You may need to take insulin if your pancreas is not making enough, e.g. those people living with type 1 diabetes.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
The transcribed area of the 5' untranslated region of the mRNA contains one of the two intervening sequences in the human insulin gene, while the other one replaces the C-peptide coding region [1]. Type 2 diabetes is frequently treated using human insulin [2].
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Mothers with diabetes using insulin may nurse their infants. Exogenous insulin is excreted into breastmilk, including newer biosynthetic insulins (e.g., aspart, deglutec, detemir, glargine glulisine, lispro). Even direct administration of recombinant insulin orally to preterm infants is safe. Insulin is a normal component of breastmilk and may decrease the risk of type 1 diabetes in breastfed infants. Women taking insulin for type 2 diabetes have higher milk insulin levels than those controlled with diet alone.
Insulin requirements are reduced postpartum in women with type 1 diabetes, although postpartum insulin requirements do not significantly differ between breastfeeding and non-breastfeeding women. In general, insulin requirements are 30% to 50% lower than prepregnancy dosages immediately postpartum. Then the insulin requirements during breastfeeding average 21% lower than prepregnancy dosages, but there is wide variation. In one study, insulin requirements were lower than prepregnancy dosage only during the first week postpartum: 54% of prepregnancy dosage on day 2 and 73% on day 3 postpartum. On day 7 postpartum, insulin dosage returned to prepregnancy requirements. Another study found that dosage requirements did not return to normal for up to 6 weeks in some mothers. A third study found that at 4 months postpartum, patients with type 1 diabetes who exclusively breastfed had an average of 13% lower (range -52% to +40%) insulin requirement than their prepregnancy requirement. A retrospective case-control study found a 34% decrease in postpartum insulin requirement compare to preconception values. There was a nonsignificant trend towards lower requirements in exclusively breastfeeding mothers compared to partial or full formula feeding. A small study found that mothers on insulin pumps were found to have an average basal insulin rates 14% lower and carbohydrate-to-insulin ratios were 10% higher than pre-pregnancy settings. Breastfeeding appears to improve glucose postpartum glucose tolerance in mothers with gestational diabetes mellitus and in normal women.
A small, well-controlled study of women with type 1 diabetes mellitus using continuous subcutaneous insulin found that the average basal insulin requirement in women with type 1 diabetes who breastfed was 0.21 units/kg daily and the total insulin requirement was 0.56 units/kg daily. In similar women who did not breastfeed, the basal insulin requirement was 0.33 units/kg daily and the total insulin requirement was 0.75 units/kg daily. The 36% lower basal insulin requirement was thought to be caused by glucose use for milk production.
Lactation onset occurs later in patients with type 1 diabetes than in women without diabetes, with a greater delay in mothers with poor glucose control. Mothers with type 1 diabetes also discontinue nursing at a higher rate during the first week postpartum. Women with any form of diabetes during pregnancy had more problems with low milk supply than women without diabetes. Once established, lactation persists as long in mothers with diabetes as in mothers without diabetes. However, as in women without diabetes, smoking has a strong negative impact on lactation among mothers with type 1 diabetes. Other factors that have been identified as causes of shorter duration of breastfeeding among type 1 diabetic patients are more frequent caesarean sections and earlier delivery. Among patients with gestational diabetes, those treated with insulin have a delayed onset of lactogenesis II compared to those not treated with insulin.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date. Insulin in breastmilk is thought to be necessary for intestinal maturation of the infant and may help decrease the risk of contracting type 1 diabetes in breastfed infants.
◉ Effects on Lactation and Breastmilk
Proper insulin levels are necessary for lactation. Good glycemic control enhances maternal serum and milk prolactin concentrations and decreases the delay in the establishment of lactation that can occur in mothers with type 1 diabetes.
One-hundred two of 107 consecutive mothers with type 1 diabetes mellitus who delivered were followed at a Danish hospital. Mothers were given prenatal information on breastfeeding and were offered postnatal counseling by a nurse on the benefits of breastfeeding. All infants were admitted to the neonatal intensive care unit at about 2 hours of age for the following 24 hours. When possible, mothers either breastfed or pumped milk for their infants during this time. Mothers were contacted at 5 days and 4 months postpartum to determine their breastfeeding status. The rates of initiation of exclusive and nonexclusive breastfeeding and exclusive formula feeding and the rates at 4 months postpartum were no different from those of the Danish population.
Eight hundred eighty-three women with gestational diabetes were interviewed at 6 to 9 weeks postpartum. Those who had been treated with insulin more frequently reported having a delayed onset of lactogenesis II (>72 hours) postpartum than those not treated with insulin, independent of other maternal risk factors. The odds ratio of having delayed lactogenesis II was 3.1 among insulin-treated mothers compared to mothers with gestational diabetes who did not receive insulin.
References
[1]. Bell GI, et al. Sequence of the human insulin gene. Nature. 1980 Mar 6;284(5751):26-32.
[2]. Tseng CH, et al. Prolonged use of human insulin increases breast cancer risk in Taiwanese women with type 2 diabetes. BMC Cancer. 2015 Nov 4;15:846.
Additional Infomation
Insulin (human) is an insulin that is produced in the pancreas and involved in regulating the metabolism of carbohydrates (particularly glucose) and fats. Commonly thought of as a protein, it consists of two peptide chains, one containing 21 amino acid residues and the other containing 30; the chains are joined together by 2 disulfide bonds. Recombinant insulin is identical to human insulin, but is synthesised by inserting the human insulin gene into E. coli, which then produces insulin for human use. It is used in the treatment of type I and type II diabetes. It has a role as a hypoglycemic agent.
See also: Insulin Human (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C257H383N65O77S6
Molecular Weight
5807.58
Exact Mass
5805.644
CAS #
11061-68-0
PubChem CID
118984375
Appearance
White to off-white solid powder
LogP
-13.1
Hydrogen Bond Donor Count
78
Hydrogen Bond Acceptor Count
89
Rotatable Bond Count
179
Heavy Atom Count
405
Complexity
14600
Defined Atom Stereocenter Count
52
SMILES
[H]/N=C(/NCCC[C@@H](C(NCC(N[C@H](C(N[C@H](C(N[C@H](C(N[C@H](C(N1[C@H](C(N[C@H](C(N[C@H](C(=O)O)[C@@H](O)C)=O)CCCCN)=O)CCC1)=O)[C@@H](O)C)=O)CC1=CC=C(O)C=C1)=O)CC1=CC=CC=C1)=O)CC1=CC=CC=C1)=O)=O)NC([C@@H](NC(CNC([C@H]1NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC2=CC=C(O)C=C2)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC2N=CNC=2)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@@H](NC([C@@H](NC([C@@H](NC([C@@H](NC([C@H](C(=O)N)NC([C@H](C(C)C)NC([C@H](CC2=CC=CC=C2)N)=O)=O)=O)CCC(=O)N)=O)CC2N=CNC=2)=O)CC(C)C)=O)CSSC[C@@H]2C(N[C@H](C(N[C@H](C(N[C@H](C(N[C@@H](CSSC[C@@H](C(N2)=O)NC([C@@H](NC([C@@H](NC([C@H](C(C)C)NC([C@H]([C@@H](CC)C)NC(CN)=O)=O)=O)CCC(=O)O)=O)CCC(=O)N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC2=CC=C(O)C=C2)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC2=CC=C(O)C=C2)C(=O)N[C@H](C(N[C@H](C(=O)O)CC(=O)N)=O)CSSC1)=O)[C@@H](CC)C)=O)CO)=O)[C@@H](O)C)=O)=O)=O)CCC(=O)O)=O)\N
InChi Key
PBGKTOXHQIOBKM-FHFVDXKLSA-N
InChi Code
InChI=1S/C257H383N65O77S6/c1-29-131(23)205(313-193(339)104-259)252(393)317-204(130(21)22)248(389)288-159(75-82-200(349)350)217(358)282-156(71-78-189(263)335)221(362)308-183-116-403-404-117-184-243(384)305-178(111-324)240(381)294-162(88-123(7)8)225(366)295-168(95-140-53-61-146(329)62-54-140)228(369)283-154(69-76-187(261)333)218(359)290-161(87-122(5)6)223(364)285-158(74-81-199(347)348)220(361)302-174(101-190(264)336)235(376)298-170(97-142-57-65-148(331)66-58-142)231(372)309-182(242(383)304-176(255(396)397)103-192(266)338)115-402-401-114-181(214(355)273-107-194(340)278-153(72-79-197(343)344)216(357)281-151(51-42-84-271-257(267)268)212(353)272-108-195(341)279-166(93-138-46-36-32-37-47-138)227(368)297-167(94-139-48-38-33-39-49-139)230(371)299-171(98-143-59-67-149(332)68-60-143)238(379)320-208(135(27)327)254(395)322-85-43-52-186(322)246(387)286-152(50-40-41-83-258)222(363)321-209(136(28)328)256(398)399)311-250(391)203(129(19)20)316-236(377)164(90-125(11)12)292-229(370)169(96-141-55-63-147(330)64-56-141)296-224(365)160(86-121(3)4)289-210(351)133(25)277-215(356)157(73-80-198(345)346)287-247(388)202(128(17)18)315-237(378)165(91-126(13)14)293-233(374)173(100-145-106-270-120-276-145)301-239(380)177(110-323)280-196(342)109-274-213(354)180(113-400-405-118-185(310-244(183)385)245(386)319-207(134(26)326)253(394)306-179(112-325)241(382)318-206(132(24)30-2)251(392)312-184)307-226(367)163(89-124(9)10)291-232(373)172(99-144-105-269-119-275-144)300-219(360)155(70-77-188(262)334)284-234(375)175(102-191(265)337)303-249(390)201(127(15)16)314-211(352)150(260)92-137-44-34-31-35-45-137/h31-39,44-49,53-68,105-106,119-136,150-186,201-209,323-332H,29-30,40-43,50-52,69-104,107-118,258-260H2,1-28H3,(H2,261,333)(H2,262,334)(H2,263,335)(H2,264,336)(H2,265,337)(H2,266,338)(H,269,275)(H,270,276)(H,272,353)(H,273,355)(H,274,354)(H,277,356)(H,278,340)(H,279,341)(H,280,342)(H,281,357)(H,282,358)(H,283,369)(H,284,375)(H,285,364)(H,286,387)(H,287,388)(H,288,389)(H,289,351)(H,290,359)(H,291,373)(H,292,370)(H,293,374)(H,294,381)(H,295,366)(H,296,365)(H,297,368)(H,298,376)(H,299,371)(H,300,360)(H,301,380)(H,302,361)(H,303,390)(H,304,383)(H,305,384)(H,306,394)(H,307,367)(H,308,362)(H,309,372)(H,310,385)(H,311,391)(H,312,392)(H,313,339)(H,314,352)(H,315,378)(H,316,377)(H,317,393)(H,318,382)(H,319,386)(H,320,379)(H,321,363)(H,343,344)(H,345,346)(H,347,348)(H,349,350)(H,396,397)(H,398,399)(H4,267,268,271)/t131-,132-,133-,134+,135+,136+,150-,151-,152-,153-,154-,155-,156-,157-,158-,159-,160-,161-,162-,163-,164-,165-,166-,167-,168-,169-,170-,171-,172-,173-,174-,175-,176-,177-,178-,179-,180-,181-,182-,183-,184-,185-,186-,201-,202-,203-,204-,205-,206-,207-,208-,209-/m0/s1
Chemical Name
(4S)-4-[[2-[[(1R,6R,12S,15S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,50S,53S,56S,59S,62S,65S,68S,71S,74R,77S,80S,83S,88R)-88-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[(2-aminoacetyl)amino]-3-methylpentanoyl]amino]-3-methylbutanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]-6-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]-3-methylbutanoyl]amino]-4-oxobutanoyl]amino]-5-oxopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-4-methylpentanoyl]amino]-47-[[(1S)-3-amino-1-carboxy-3-oxopropyl]carbamoyl]-53-(2-amino-2-oxoethyl)-62-(3-amino-3-oxopropyl)-77-[(2S)-butan-2-yl]-24,56-bis(2-carboxyethyl)-83-[(1R)-1-hydroxyethyl]-12,71,80-tris(hydroxymethyl)-33,50,65-tris[(4-hydroxyphenyl)methyl]-15-(1H-imidazol-4-ylmethyl)-27-methyl-18,30,36,59,68-pentakis(2-methylpropyl)-7,10,13,16,19,22,25,28,31,34,37,40,49,52,55,58,61,64,67,70,73,76,79,82,85,87-hexacosaoxo-21,39-di(propan-2-yl)-3,4,44,45,90,91-hexathia-8,11,14,17,20,23,26,29,32,35,38,41,48,51,54,57,60,63,66,69,72,75,78,81,84,86-hexacosazabicyclo[72.11.7]dononacontane-42-carbonyl]amino]acetyl]amino]-5-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3R)-1-[(2S)-2-[[(2S)-6-amino-1-[[(1S,2R)-1-carboxy-2-hydroxypropyl]amino]-1-oxohexan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-hydroxy-1-oxobutan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-5-oxopentanoic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~10 mg/mL (~1.72 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.1722 mL 0.8609 mL 1.7219 mL
5 mM 0.0344 mL 0.1722 mL 0.3444 mL
10 mM 0.0172 mL 0.0861 mL 0.1722 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us